1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
/*
* Copyright (c) 2012-2014 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package xdr
import (
"fmt"
"io"
"math"
"reflect"
"time"
)
var (
errMaxSlice = "data exceeds max slice limit"
errIODecode = "%s while decoding %d bytes"
)
/*
Unmarshal parses XDR-encoded data into the value pointed to by v reading from
reader r and returning the total number of bytes read. An addressable pointer
must be provided since Unmarshal needs to both store the result of the decode as
well as obtain target type information. Unmarhsal traverses v recursively and
automatically indirects pointers through arbitrary depth, allocating them as
necessary, to decode the data into the underlying value pointed to.
Unmarshal uses reflection to determine the type of the concrete value contained
by v and performs a mapping of underlying XDR types to Go types as follows:
Go Type <- XDR Type
--------------------
int8, int16, int32, int <- XDR Integer
uint8, uint16, uint32, uint <- XDR Unsigned Integer
int64 <- XDR Hyper Integer
uint64 <- XDR Unsigned Hyper Integer
bool <- XDR Boolean
float32 <- XDR Floating-Point
float64 <- XDR Double-Precision Floating-Point
string <- XDR String
byte <- XDR Integer
[]byte <- XDR Variable-Length Opaque Data
[#]byte <- XDR Fixed-Length Opaque Data
[]<type> <- XDR Variable-Length Array
[#]<type> <- XDR Fixed-Length Array
struct <- XDR Structure
map <- XDR Variable-Length Array of two-element XDR Structures
time.Time <- XDR String encoded with RFC3339 nanosecond precision
Notes and Limitations:
* Automatic unmarshalling of variable and fixed-length arrays of uint8s
requires a special struct tag `xdropaque:"false"` since byte slices
and byte arrays are assumed to be opaque data and byte is a Go alias
for uint8 thus indistinguishable under reflection
* Cyclic data structures are not supported and will result in infinite
loops
If any issues are encountered during the unmarshalling process, an
UnmarshalError is returned with a human readable description as well as
an ErrorCode value for further inspection from sophisticated callers. Some
potential issues are unsupported Go types, attempting to decode a value which is
too large to fit into a specified Go type, and exceeding max slice limitations.
*/
func Unmarshal(r io.Reader, v interface{}) (int, error) {
d := Decoder{r: r}
return d.Decode(v)
}
// UnmarshalLimited is identical to Unmarshal but it sets maxReadSize in order
// to cap reads.
func UnmarshalLimited(r io.Reader, v interface{}, maxSize uint) (int, error) {
d := Decoder{r: r, maxReadSize: maxSize}
return d.Decode(v)
}
// TypeDecoder lets a caller provide a custom decode routine for a custom type.
type TypeDecoder interface {
Decode(*Decoder, reflect.Value) (int, error)
}
// A Decoder wraps an io.Reader that is expected to provide an XDR-encoded byte
// stream and provides several exposed methods to manually decode various XDR
// primitives without relying on reflection. The NewDecoder function can be
// used to get a new Decoder directly.
//
// Typically, Unmarshal should be used instead of manual decoding. A Decoder
// is exposed so it is possible to perform manual decoding should it be
// necessary in complex scenarios where automatic reflection-based decoding
// won't work.
type Decoder struct {
r io.Reader
// maxReadSize is the default maximum bytes an element can contain. 0
// is unlimited and provides backwards compatability. Setting it to a
// non-zero value caps reads.
maxReadSize uint
// customTypes is a map allowing the caller to provide decoder routines for
// custom types known only to itself.
customTypes map[string]TypeDecoder
}
// DecodeInt treats the next 4 bytes as an XDR encoded integer and returns the
// result as an int32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.1 - Integer
// 32-bit big-endian signed integer in range [-2147483648, 2147483647]
func (d *Decoder) DecodeInt() (int32, int, error) {
var buf [4]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 4)
err := unmarshalError("DecodeInt", ErrIO, msg, buf[:n], err)
return 0, n, err
}
rv := int32(buf[3]) | int32(buf[2])<<8 |
int32(buf[1])<<16 | int32(buf[0])<<24
return rv, n, nil
}
// DecodeUint treats the next 4 bytes as an XDR encoded unsigned integer and
// returns the result as a uint32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.2 - Unsigned Integer
// 32-bit big-endian unsigned integer in range [0, 4294967295]
func (d *Decoder) DecodeUint() (uint32, int, error) {
var buf [4]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 4)
err := unmarshalError("DecodeUint", ErrIO, msg, buf[:n], err)
return 0, n, err
}
rv := uint32(buf[3]) | uint32(buf[2])<<8 |
uint32(buf[1])<<16 | uint32(buf[0])<<24
return rv, n, nil
}
// DecodeEnum treats the next 4 bytes as an XDR encoded enumeration value and
// returns the result as an int32 after verifying that the value is in the
// provided map of valid values. It also returns the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the parsed enumeration value is not one of the provided valid values.
//
// Reference:
// RFC Section 4.3 - Enumeration
// Represented as an XDR encoded signed integer
func (d *Decoder) DecodeEnum(validEnums map[int32]bool) (int32, int, error) {
val, n, err := d.DecodeInt()
if err != nil {
return 0, n, err
}
if !validEnums[val] {
err := unmarshalError("DecodeEnum", ErrBadEnumValue,
"invalid enum", val, nil)
return 0, n, err
}
return val, n, nil
}
// DecodeBool treats the next 4 bytes as an XDR encoded boolean value and
// returns the result as a bool along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the parsed value is not a 0 or 1.
//
// Reference:
// RFC Section 4.4 - Boolean
// Represented as an XDR encoded enumeration where 0 is false and 1 is true
func (d *Decoder) DecodeBool() (bool, int, error) {
val, n, err := d.DecodeInt()
if err != nil {
return false, n, err
}
switch val {
case 0:
return false, n, nil
case 1:
return true, n, nil
}
err = unmarshalError("DecodeBool", ErrBadEnumValue, "bool not 0 or 1",
val, nil)
return false, n, err
}
// DecodeHyper treats the next 8 bytes as an XDR encoded hyper value and
// returns the result as an int64 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.5 - Hyper Integer
// 64-bit big-endian signed integer in range [-9223372036854775808, 9223372036854775807]
func (d *Decoder) DecodeHyper() (int64, int, error) {
var buf [8]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 8)
err := unmarshalError("DecodeHyper", ErrIO, msg, buf[:n], err)
return 0, n, err
}
rv := int64(buf[7]) | int64(buf[6])<<8 |
int64(buf[5])<<16 | int64(buf[4])<<24 |
int64(buf[3])<<32 | int64(buf[2])<<40 |
int64(buf[1])<<48 | int64(buf[0])<<56
return rv, n, err
}
// DecodeUhyper treats the next 8 bytes as an XDR encoded unsigned hyper value
// and returns the result as a uint64 along with the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.5 - Unsigned Hyper Integer
// 64-bit big-endian unsigned integer in range [0, 18446744073709551615]
func (d *Decoder) DecodeUhyper() (uint64, int, error) {
var buf [8]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 8)
err := unmarshalError("DecodeUhyper", ErrIO, msg, buf[:n], err)
return 0, n, err
}
rv := uint64(buf[7]) | uint64(buf[6])<<8 |
uint64(buf[5])<<16 | uint64(buf[4])<<24 |
uint64(buf[3])<<32 | uint64(buf[2])<<40 |
uint64(buf[1])<<48 | uint64(buf[0])<<56
return rv, n, nil
}
// DecodeFloat treats the next 4 bytes as an XDR encoded floating point and
// returns the result as a float32 along with the number of bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.6 - Floating Point
// 32-bit single-precision IEEE 754 floating point
func (d *Decoder) DecodeFloat() (float32, int, error) {
var buf [4]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 4)
err := unmarshalError("DecodeFloat", ErrIO, msg, buf[:n], err)
return 0, n, err
}
val := uint32(buf[3]) | uint32(buf[2])<<8 |
uint32(buf[1])<<16 | uint32(buf[0])<<24
return math.Float32frombits(val), n, nil
}
// DecodeDouble treats the next 8 bytes as an XDR encoded double-precision
// floating point and returns the result as a float64 along with the number of
// bytes actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining.
//
// Reference:
// RFC Section 4.7 - Double-Precision Floating Point
// 64-bit double-precision IEEE 754 floating point
func (d *Decoder) DecodeDouble() (float64, int, error) {
var buf [8]byte
n, err := io.ReadFull(d.r, buf[:])
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), 8)
err := unmarshalError("DecodeDouble", ErrIO, msg, buf[:n], err)
return 0, n, err
}
val := uint64(buf[7]) | uint64(buf[6])<<8 |
uint64(buf[5])<<16 | uint64(buf[4])<<24 |
uint64(buf[3])<<32 | uint64(buf[2])<<40 |
uint64(buf[1])<<48 | uint64(buf[0])<<56
return math.Float64frombits(val), n, nil
}
// RFC Section 4.8 - Quadruple-Precision Floating Point
// 128-bit quadruple-precision floating point
// Not Implemented
// DecodeFixedOpaque treats the next 'size' bytes as XDR encoded opaque data and
// returns the result as a byte slice along with the number of bytes actually
// read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining to
// satisfy the passed size, including the necessary padding to make it a
// multiple of 4.
//
// Reference:
// RFC Section 4.9 - Fixed-Length Opaque Data
// Fixed-length uninterpreted data zero-padded to a multiple of four
func (d *Decoder) DecodeFixedOpaque(size int32) ([]byte, int, error) {
// Nothing to do if size is 0.
if size == 0 {
return nil, 0, nil
}
pad := (4 - (size % 4)) % 4
paddedSize := size + pad
if uint(paddedSize) > uint(math.MaxInt32) {
err := unmarshalError("DecodeFixedOpaque", ErrOverflow,
errMaxSlice, paddedSize, nil)
return nil, 0, err
}
buf := make([]byte, paddedSize)
n, err := io.ReadFull(d.r, buf)
if err != nil {
msg := fmt.Sprintf(errIODecode, err.Error(), paddedSize)
err := unmarshalError("DecodeFixedOpaque", ErrIO, msg, buf[:n],
err)
return nil, n, err
}
return buf[0:size], n, nil
}
// DecodeOpaque treats the next bytes as variable length XDR encoded opaque
// data and returns the result as a byte slice along with the number of bytes
// actually read.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the opaque data is larger than the max length of a Go slice.
//
// Reference:
// RFC Section 4.10 - Variable-Length Opaque Data
// Unsigned integer length followed by fixed opaque data of that length
func (d *Decoder) DecodeOpaque() ([]byte, int, error) {
dataLen, n, err := d.DecodeUint()
if err != nil {
return nil, n, err
}
if uint(dataLen) > uint(math.MaxInt32) ||
(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
err := unmarshalError("DecodeOpaque", ErrOverflow, errMaxSlice,
dataLen, nil)
return nil, n, err
}
rv, n2, err := d.DecodeFixedOpaque(int32(dataLen))
n += n2
if err != nil {
return nil, n, err
}
return rv, n, nil
}
// DecodeString treats the next bytes as a variable length XDR encoded string
// and returns the result as a string along with the number of bytes actually
// read. Character encoding is assumed to be UTF-8 and therefore ASCII
// compatible. If the underlying character encoding is not compatibile with
// this assumption, the data can instead be read as variable-length opaque data
// (DecodeOpaque) and manually converted as needed.
//
// An UnmarshalError is returned if there are insufficient bytes remaining or
// the string data is larger than the max length of a Go slice.
//
// Reference:
// RFC Section 4.11 - String
// Unsigned integer length followed by bytes zero-padded to a multiple of
// four
func (d *Decoder) DecodeString() (string, int, error) {
dataLen, n, err := d.DecodeUint()
if err != nil {
return "", n, err
}
if uint(dataLen) > uint(math.MaxInt32) ||
(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
err = unmarshalError("DecodeString", ErrOverflow, errMaxSlice,
dataLen, nil)
return "", n, err
}
opaque, n2, err := d.DecodeFixedOpaque(int32(dataLen))
n += n2
if err != nil {
return "", n, err
}
return string(opaque), n, nil
}
// decodeFixedArray treats the next bytes as a series of XDR encoded elements
// of the same type as the array represented by the reflection value and decodes
// each element into the passed array. The ignoreOpaque flag controls whether
// or not uint8 (byte) elements should be decoded individually or as a fixed
// sequence of opaque data. It returns the the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the array elements.
//
// Reference:
// RFC Section 4.12 - Fixed-Length Array
// Individually XDR encoded array elements
func (d *Decoder) decodeFixedArray(v reflect.Value, ignoreOpaque bool) (int, error) {
// Treat [#]byte (byte is alias for uint8) as opaque data unless
// ignored.
if !ignoreOpaque && v.Type().Elem().Kind() == reflect.Uint8 {
data, n, err := d.DecodeFixedOpaque(int32(v.Len()))
if err != nil {
return n, err
}
reflect.Copy(v, reflect.ValueOf(data))
return n, nil
}
// Decode each array element.
var n int
for i := 0; i < v.Len(); i++ {
n2, err := d.decode(v.Index(i))
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// decodeArray treats the next bytes as a variable length series of XDR encoded
// elements of the same type as the array represented by the reflection value.
// The number of elements is obtained by first decoding the unsigned integer
// element count. Then each element is decoded into the passed array. The
// ignoreOpaque flag controls whether or not uint8 (byte) elements should be
// decoded individually or as a variable sequence of opaque data. It returns
// the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the array elements.
//
// Reference:
// RFC Section 4.13 - Variable-Length Array
// Unsigned integer length followed by individually XDR encoded array
// elements
func (d *Decoder) decodeArray(v reflect.Value, ignoreOpaque bool) (int, error) {
dataLen, n, err := d.DecodeUint()
if err != nil {
return n, err
}
if uint(dataLen) > uint(math.MaxInt32) ||
(d.maxReadSize != 0 && uint(dataLen) > d.maxReadSize) {
err := unmarshalError("decodeArray", ErrOverflow, errMaxSlice,
dataLen, nil)
return n, err
}
// Allocate storage for the slice elements (the underlying array) if
// existing slice does not have enough capacity.
sliceLen := int(dataLen)
if v.Cap() < sliceLen {
v.Set(reflect.MakeSlice(v.Type(), sliceLen, sliceLen))
}
if v.Len() < sliceLen {
v.SetLen(sliceLen)
}
// Treat []byte (byte is alias for uint8) as opaque data unless ignored.
if !ignoreOpaque && v.Type().Elem().Kind() == reflect.Uint8 {
data, n2, err := d.DecodeFixedOpaque(int32(sliceLen))
n += n2
if err != nil {
return n, err
}
v.SetBytes(data)
return n, nil
}
// Decode each slice element.
for i := 0; i < sliceLen; i++ {
n2, err := d.decode(v.Index(i))
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// decodeStruct treats the next bytes as a series of XDR encoded elements
// of the same type as the exported fields of the struct represented by the
// passed reflection value. Pointers are automatically indirected and
// allocated as necessary. It returns the the number of bytes actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the elements.
//
// Reference:
// RFC Section 4.14 - Structure
// XDR encoded elements in the order of their declaration in the struct
func (d *Decoder) decodeStruct(v reflect.Value) (int, error) {
var n int
vt := v.Type()
for i := 0; i < v.NumField(); i++ {
// Skip unexported fields.
vtf := vt.Field(i)
if vtf.PkgPath != "" {
continue
}
// Indirect through pointers allocating them as needed and
// ensure the field is settable.
vf := v.Field(i)
vf, err := d.indirect(vf)
if err != nil {
return n, err
}
if !vf.CanSet() {
msg := fmt.Sprintf("can't decode to unsettable '%v'",
vf.Type().String())
err := unmarshalError("decodeStruct", ErrNotSettable,
msg, nil, nil)
return n, err
}
// Handle non-opaque data to []uint8 and [#]uint8 based on
// struct tag.
tag := vtf.Tag.Get("xdropaque")
if tag == "false" {
switch vf.Kind() {
case reflect.Slice:
n2, err := d.decodeArray(vf, true)
n += n2
if err != nil {
return n, err
}
continue
case reflect.Array:
n2, err := d.decodeFixedArray(vf, true)
n += n2
if err != nil {
return n, err
}
continue
}
}
// Decode each struct field.
n2, err := d.decode(vf)
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// RFC Section 4.15 - Discriminated Union
// RFC Section 4.16 - Void
// RFC Section 4.17 - Constant
// RFC Section 4.18 - Typedef
// RFC Section 4.19 - Optional data
// RFC Sections 4.15 though 4.19 only apply to the data specification language
// which is not implemented by this package. In the case of discriminated
// unions, struct tags are used to perform a similar function.
// decodeMap treats the next bytes as an XDR encoded variable array of 2-element
// structures whose fields are of the same type as the map keys and elements
// represented by the passed reflection value. Pointers are automatically
// indirected and allocated as necessary. It returns the the number of bytes
// actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the elements.
func (d *Decoder) decodeMap(v reflect.Value) (int, error) {
dataLen, n, err := d.DecodeUint()
if err != nil {
return n, err
}
// Allocate storage for the underlying map if needed.
vt := v.Type()
if v.IsNil() {
v.Set(reflect.MakeMap(vt))
}
// Decode each key and value according to their type.
keyType := vt.Key()
elemType := vt.Elem()
for i := uint32(0); i < dataLen; i++ {
key := reflect.New(keyType).Elem()
n2, err := d.decode(key)
n += n2
if err != nil {
return n, err
}
val := reflect.New(elemType).Elem()
n2, err = d.decode(val)
n += n2
if err != nil {
return n, err
}
v.SetMapIndex(key, val)
}
return n, nil
}
// decodeInterface examines the interface represented by the passed reflection
// value to detect whether it is an interface that can be decoded into and
// if it is, extracts the underlying value to pass back into the decode function
// for decoding according to its type. It returns the the number of bytes
// actually read.
//
// An UnmarshalError is returned if any issues are encountered while decoding
// the interface.
func (d *Decoder) decodeInterface(v reflect.Value) (int, error) {
if v.IsNil() || !v.CanInterface() {
msg := fmt.Sprintf("can't decode to nil interface")
err := unmarshalError("decodeInterface", ErrNilInterface, msg,
nil, nil)
return 0, err
}
// Extract underlying value from the interface and indirect through
// pointers allocating them as needed.
ve := reflect.ValueOf(v.Interface())
ve, err := d.indirect(ve)
if err != nil {
return 0, err
}
if !ve.CanSet() {
msg := fmt.Sprintf("can't decode to unsettable '%v'",
ve.Type().String())
err := unmarshalError("decodeInterface", ErrNotSettable, msg,
nil, nil)
return 0, err
}
return d.decode(ve)
}
// decode is the main workhorse for unmarshalling via reflection. It uses
// the passed reflection value to choose the XDR primitives to decode from
// the encapsulated reader. It is a recursive function,
// so cyclic data structures are not supported and will result in an infinite
// loop. It returns the the number of bytes actually read.
func (d *Decoder) decode(v reflect.Value) (int, error) {
if !v.IsValid() {
msg := fmt.Sprintf("type '%s' is not valid", v.Kind().String())
err := unmarshalError("decode", ErrUnsupportedType, msg, nil, nil)
return 0, err
}
// Indirect through pointers allocating them as needed.
ve, err := d.indirect(v)
if err != nil {
return 0, err
}
// Handle time.Time values by decoding them as an RFC3339 formatted
// string with nanosecond precision. Check the type string rather
// than doing a full blown conversion to interface and type assertion
// since checking a string is much quicker.
switch ve.Type().String() {
case "time.Time":
// Read the value as a string and parse it.
timeString, n, err := d.DecodeString()
if err != nil {
return n, err
}
ttv, err := time.Parse(time.RFC3339, timeString)
if err != nil {
err := unmarshalError("decode", ErrParseTime,
err.Error(), timeString, err)
return n, err
}
ve.Set(reflect.ValueOf(ttv))
return n, nil
}
// If this type is in our custom types map, call the decode routine set up
// for it.
if dt, ok := d.customTypes[ve.Type().String()]; ok {
return dt.Decode(d, v)
}
// Handle native Go types.
switch ve.Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int:
i, n, err := d.DecodeInt()
if err != nil {
return n, err
}
if ve.OverflowInt(int64(i)) {
msg := fmt.Sprintf("signed integer too large to fit '%s'",
ve.Kind().String())
err = unmarshalError("decode", ErrOverflow, msg, i, nil)
return n, err
}
ve.SetInt(int64(i))
return n, nil
case reflect.Int64:
i, n, err := d.DecodeHyper()
if err != nil {
return n, err
}
ve.SetInt(i)
return n, nil
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint:
ui, n, err := d.DecodeUint()
if err != nil {
return n, err
}
if ve.OverflowUint(uint64(ui)) {
msg := fmt.Sprintf("unsigned integer too large to fit '%s'",
ve.Kind().String())
err = unmarshalError("decode", ErrOverflow, msg, ui, nil)
return n, err
}
ve.SetUint(uint64(ui))
return n, nil
case reflect.Uint64:
ui, n, err := d.DecodeUhyper()
if err != nil {
return n, err
}
ve.SetUint(ui)
return n, nil
case reflect.Bool:
b, n, err := d.DecodeBool()
if err != nil {
return n, err
}
ve.SetBool(b)
return n, nil
case reflect.Float32:
f, n, err := d.DecodeFloat()
if err != nil {
return n, err
}
ve.SetFloat(float64(f))
return n, nil
case reflect.Float64:
f, n, err := d.DecodeDouble()
if err != nil {
return n, err
}
ve.SetFloat(f)
return n, nil
case reflect.String:
s, n, err := d.DecodeString()
if err != nil {
return n, err
}
ve.SetString(s)
return n, nil
case reflect.Array:
n, err := d.decodeFixedArray(ve, false)
if err != nil {
return n, err
}
return n, nil
case reflect.Slice:
n, err := d.decodeArray(ve, false)
if err != nil {
return n, err
}
return n, nil
case reflect.Struct:
n, err := d.decodeStruct(ve)
if err != nil {
return n, err
}
return n, nil
case reflect.Map:
n, err := d.decodeMap(ve)
if err != nil {
return n, err
}
return n, nil
case reflect.Interface:
n, err := d.decodeInterface(ve)
if err != nil {
return n, err
}
return n, nil
}
// The only unhandled types left are unsupported. At the time of this
// writing the only remaining unsupported types that exist are
// reflect.Uintptr and reflect.UnsafePointer.
msg := fmt.Sprintf("unsupported Go type '%s'", ve.Kind().String())
err = unmarshalError("decode", ErrUnsupportedType, msg, nil, nil)
return 0, err
}
// indirect dereferences pointers allocating them as needed until it reaches
// a non-pointer. This allows transparent decoding through arbitrary levels
// of indirection.
func (d *Decoder) indirect(v reflect.Value) (reflect.Value, error) {
rv := v
for rv.Kind() == reflect.Ptr {
// Allocate pointer if needed.
isNil := rv.IsNil()
if isNil && !rv.CanSet() {
msg := fmt.Sprintf("unable to allocate pointer for '%v'",
rv.Type().String())
err := unmarshalError("indirect", ErrNotSettable, msg,
nil, nil)
return rv, err
}
if isNil {
rv.Set(reflect.New(rv.Type().Elem()))
}
rv = rv.Elem()
}
return rv, nil
}
// Decode operates identically to the Unmarshal function with the exception of
// using the reader associated with the Decoder as the source of XDR-encoded
// data instead of a user-supplied reader. See the Unmarhsal documentation for
// specifics.
func (d *Decoder) Decode(v interface{}) (int, error) {
if v == nil {
msg := "can't unmarshal to nil interface"
return 0, unmarshalError("Unmarshal", ErrNilInterface, msg, nil,
nil)
}
vv := reflect.ValueOf(v)
if vv.Kind() != reflect.Ptr {
msg := fmt.Sprintf("can't unmarshal to non-pointer '%v' - use "+
"& operator", vv.Type().String())
err := unmarshalError("Unmarshal", ErrBadArguments, msg, nil, nil)
return 0, err
}
if vv.IsNil() && !vv.CanSet() {
msg := fmt.Sprintf("can't unmarshal to unsettable '%v' - use "+
"& operator", vv.Type().String())
err := unmarshalError("Unmarshal", ErrNotSettable, msg, nil, nil)
return 0, err
}
return d.decode(vv)
}
// NewDecoder returns a Decoder that can be used to manually decode XDR data
// from a provided reader. Typically, Unmarshal should be used instead of
// manually creating a Decoder.
func NewDecoder(r io.Reader) *Decoder {
return &Decoder{r: r}
}
// NewDecoderLimited is identical to NewDecoder but it sets maxReadSize in
// order to cap reads.
func NewDecoderLimited(r io.Reader, maxSize uint) *Decoder {
return &Decoder{r: r, maxReadSize: maxSize}
}
// NewDecoderCustomTypes returns a decoder with support for custom types known
// to the caller. The second parameter is a map of the type name to the decoder
// routine. When the decoder finds a type matching one of the entries in the map
// it will call the custom routine for that type.
func NewDecoderCustomTypes(r io.Reader, maxSize uint, ct map[string]TypeDecoder) *Decoder {
return &Decoder{r: r, maxReadSize: maxSize, customTypes: ct}
}
|