1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
/*
* Copyright (c) 2012-2014 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package xdr
import (
"fmt"
"io"
"math"
"reflect"
"time"
)
var errIOEncode = "%s while encoding %d bytes"
/*
Marshal writes the XDR encoding of v to writer w and returns the number of bytes
written. It traverses v recursively and automatically indirects pointers
through arbitrary depth to encode the actual value pointed to.
Marshal uses reflection to determine the type of the concrete value contained by
v and performs a mapping of Go types to the underlying XDR types as follows:
Go Type -> XDR Type
--------------------
int8, int16, int32, int -> XDR Integer
uint8, uint16, uint32, uint -> XDR Unsigned Integer
int64 -> XDR Hyper Integer
uint64 -> XDR Unsigned Hyper Integer
bool -> XDR Boolean
float32 -> XDR Floating-Point
float64 -> XDR Double-Precision Floating-Point
string -> XDR String
byte -> XDR Integer
[]byte -> XDR Variable-Length Opaque Data
[#]byte -> XDR Fixed-Length Opaque Data
[]<type> -> XDR Variable-Length Array
[#]<type> -> XDR Fixed-Length Array
struct -> XDR Structure
map -> XDR Variable-Length Array of two-element XDR Structures
time.Time -> XDR String encoded with RFC3339 nanosecond precision
Notes and Limitations:
* Automatic marshalling of variable and fixed-length arrays of uint8s
requires a special struct tag `xdropaque:"false"` since byte slices and
byte arrays are assumed to be opaque data and byte is a Go alias for uint8
thus indistinguishable under reflection
* Channel, complex, and function types cannot be encoded
* Interfaces without a concrete value cannot be encoded
* Cyclic data structures are not supported and will result in infinite loops
* Strings are marshalled with UTF-8 character encoding which differs from
the XDR specification of ASCII, however UTF-8 is backwards compatible with
ASCII so this should rarely cause issues
If any issues are encountered during the marshalling process, a MarshalError is
returned with a human readable description as well as an ErrorCode value for
further inspection from sophisticated callers. Some potential issues are
unsupported Go types, attempting to encode more opaque data than can be
represented by a single opaque XDR entry, and exceeding max slice limitations.
*/
func Marshal(w io.Writer, v interface{}) (int, error) {
enc := Encoder{w: w}
return enc.Encode(v)
}
// An Encoder wraps an io.Writer that will receive the XDR encoded byte stream.
// See NewEncoder.
type Encoder struct {
w io.Writer
}
// EncodeInt writes the XDR encoded representation of the passed 32-bit signed
// integer to the encapsulated writer and returns the number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.1 - Integer
// 32-bit big-endian signed integer in range [-2147483648, 2147483647]
func (enc *Encoder) EncodeInt(v int32) (int, error) {
var b [4]byte
b[0] = byte(v >> 24)
b[1] = byte(v >> 16)
b[2] = byte(v >> 8)
b[3] = byte(v)
n, err := enc.w.Write(b[:])
if err != nil {
msg := fmt.Sprintf(errIOEncode, err.Error(), 4)
err := marshalError("EncodeInt", ErrIO, msg, b[:n], err)
return n, err
}
return n, nil
}
// EncodeUint writes the XDR encoded representation of the passed 32-bit
// unsigned integer to the encapsulated writer and returns the number of bytes
// written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.2 - Unsigned Integer
// 32-bit big-endian unsigned integer in range [0, 4294967295]
func (enc *Encoder) EncodeUint(v uint32) (int, error) {
var b [4]byte
b[0] = byte(v >> 24)
b[1] = byte(v >> 16)
b[2] = byte(v >> 8)
b[3] = byte(v)
n, err := enc.w.Write(b[:])
if err != nil {
msg := fmt.Sprintf(errIOEncode, err.Error(), 4)
err := marshalError("EncodeUint", ErrIO, msg, b[:n], err)
return n, err
}
return n, nil
}
// EncodeEnum treats the passed 32-bit signed integer as an enumeration value
// and, if it is in the list of passed valid enumeration values, writes the XDR
// encoded representation of it to the encapsulated writer. It returns the
// number of bytes written.
//
// A MarshalError is returned if the enumeration value is not one of the
// provided valid values or if writing the data fails.
//
// Reference:
// RFC Section 4.3 - Enumeration
// Represented as an XDR encoded signed integer
func (enc *Encoder) EncodeEnum(v int32, validEnums map[int32]bool) (int, error) {
if !validEnums[v] {
err := marshalError("EncodeEnum", ErrBadEnumValue,
"invalid enum", v, nil)
return 0, err
}
return enc.EncodeInt(v)
}
// EncodeBool writes the XDR encoded representation of the passed boolean to the
// encapsulated writer and returns the number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.4 - Boolean
// Represented as an XDR encoded enumeration where 0 is false and 1 is true
func (enc *Encoder) EncodeBool(v bool) (int, error) {
i := int32(0)
if v == true {
i = 1
}
return enc.EncodeInt(i)
}
// EncodeHyper writes the XDR encoded representation of the passed 64-bit
// signed integer to the encapsulated writer and returns the number of bytes
// written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.5 - Hyper Integer
// 64-bit big-endian signed integer in range [-9223372036854775808, 9223372036854775807]
func (enc *Encoder) EncodeHyper(v int64) (int, error) {
var b [8]byte
b[0] = byte(v >> 56)
b[1] = byte(v >> 48)
b[2] = byte(v >> 40)
b[3] = byte(v >> 32)
b[4] = byte(v >> 24)
b[5] = byte(v >> 16)
b[6] = byte(v >> 8)
b[7] = byte(v)
n, err := enc.w.Write(b[:])
if err != nil {
msg := fmt.Sprintf(errIOEncode, err.Error(), 8)
err := marshalError("EncodeHyper", ErrIO, msg, b[:n], err)
return n, err
}
return n, nil
}
// EncodeUhyper writes the XDR encoded representation of the passed 64-bit
// unsigned integer to the encapsulated writer and returns the number of bytes
// written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.5 - Unsigned Hyper Integer
// 64-bit big-endian unsigned integer in range [0, 18446744073709551615]
func (enc *Encoder) EncodeUhyper(v uint64) (int, error) {
var b [8]byte
b[0] = byte(v >> 56)
b[1] = byte(v >> 48)
b[2] = byte(v >> 40)
b[3] = byte(v >> 32)
b[4] = byte(v >> 24)
b[5] = byte(v >> 16)
b[6] = byte(v >> 8)
b[7] = byte(v)
n, err := enc.w.Write(b[:])
if err != nil {
msg := fmt.Sprintf(errIOEncode, err.Error(), 8)
err := marshalError("EncodeUhyper", ErrIO, msg, b[:n], err)
return n, err
}
return n, nil
}
// EncodeFloat writes the XDR encoded representation of the passed 32-bit
// (single-precision) floating point to the encapsulated writer and returns the
// number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.6 - Floating Point
// 32-bit single-precision IEEE 754 floating point
func (enc *Encoder) EncodeFloat(v float32) (int, error) {
ui := math.Float32bits(v)
return enc.EncodeUint(ui)
}
// EncodeDouble writes the XDR encoded representation of the passed 64-bit
// (double-precision) floating point to the encapsulated writer and returns the
// number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.7 - Double-Precision Floating Point
// 64-bit double-precision IEEE 754 floating point
func (enc *Encoder) EncodeDouble(v float64) (int, error) {
ui := math.Float64bits(v)
return enc.EncodeUhyper(ui)
}
// RFC Section 4.8 - Quadruple-Precision Floating Point
// 128-bit quadruple-precision floating point
// Not Implemented
// EncodeFixedOpaque treats the passed byte slice as opaque data of a fixed
// size and writes the XDR encoded representation of it to the encapsulated
// writer. It returns the number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.9 - Fixed-Length Opaque Data
// Fixed-length uninterpreted data zero-padded to a multiple of four
func (enc *Encoder) EncodeFixedOpaque(v []byte) (int, error) {
l := len(v)
pad := (4 - (l % 4)) % 4
// Write the actual bytes.
n, err := enc.w.Write(v)
if err != nil {
msg := fmt.Sprintf(errIOEncode, err.Error(), len(v))
err := marshalError("EncodeFixedOpaque", ErrIO, msg, v[:n], err)
return n, err
}
// Write any padding if needed.
if pad > 0 {
b := make([]byte, pad)
n2, err := enc.w.Write(b)
n += n2
if err != nil {
written := make([]byte, l+n2)
copy(written, v)
copy(written[l:], b[:n2])
msg := fmt.Sprintf(errIOEncode, err.Error(), l+pad)
err := marshalError("EncodeFixedOpaque", ErrIO, msg,
written, err)
return n, err
}
}
return n, nil
}
// EncodeOpaque treats the passed byte slice as opaque data of a variable
// size and writes the XDR encoded representation of it to the encapsulated
// writer. It returns the number of bytes written.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.10 - Variable-Length Opaque Data
// Unsigned integer length followed by fixed opaque data of that length
func (enc *Encoder) EncodeOpaque(v []byte) (int, error) {
// Length of opaque data.
n, err := enc.EncodeUint(uint32(len(v)))
if err != nil {
return n, err
}
n2, err := enc.EncodeFixedOpaque(v)
n += n2
return n, err
}
// EncodeString writes the XDR encoded representation of the passed string
// to the encapsulated writer and returns the number of bytes written.
// Character encoding is assumed to be UTF-8 and therefore ASCII compatible. If
// the underlying character encoding is not compatible with this assumption, the
// data can instead be written as variable-length opaque data (EncodeOpaque) and
// manually converted as needed.
//
// A MarshalError with an error code of ErrIO is returned if writing the data
// fails.
//
// Reference:
// RFC Section 4.11 - String
// Unsigned integer length followed by bytes zero-padded to a multiple of four
func (enc *Encoder) EncodeString(v string) (int, error) {
// Length of string.
n, err := enc.EncodeUint(uint32(len(v)))
if err != nil {
return n, err
}
n2, err := enc.EncodeFixedOpaque([]byte(v))
n += n2
return n, err
}
// encodeFixedArray writes the XDR encoded representation of each element
// in the passed array represented by the reflection value to the encapsulated
// writer and returns the number of bytes written. The ignoreOpaque flag
// controls whether or not uint8 (byte) elements should be encoded individually
// or as a fixed sequence of opaque data.
//
// A MarshalError is returned if any issues are encountered while encoding
// the array elements.
//
// Reference:
// RFC Section 4.12 - Fixed-Length Array
// Individually XDR encoded array elements
func (enc *Encoder) encodeFixedArray(v reflect.Value, ignoreOpaque bool) (int, error) {
// Treat [#]byte (byte is alias for uint8) as opaque data unless ignored.
if !ignoreOpaque && v.Type().Elem().Kind() == reflect.Uint8 {
// Create a slice of the underlying array for better efficiency
// when possible. Can't create a slice of an unaddressable
// value.
if v.CanAddr() {
return enc.EncodeFixedOpaque(v.Slice(0, v.Len()).Bytes())
}
// When the underlying array isn't addressable fall back to
// copying the array into a new slice. This is rather ugly, but
// the inability to create a constant slice from an
// unaddressable array is a limitation of Go.
slice := make([]byte, v.Len(), v.Len())
reflect.Copy(reflect.ValueOf(slice), v)
return enc.EncodeFixedOpaque(slice)
}
// Encode each array element.
var n int
for i := 0; i < v.Len(); i++ {
n2, err := enc.encode(v.Index(i))
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// encodeArray writes an XDR encoded integer representing the number of
// elements in the passed slice represented by the reflection value followed by
// the XDR encoded representation of each element in slice to the encapsulated
// writer and returns the number of bytes written. The ignoreOpaque flag
// controls whether or not uint8 (byte) elements should be encoded individually
// or as a variable sequence of opaque data.
//
// A MarshalError is returned if any issues are encountered while encoding
// the array elements.
//
// Reference:
// RFC Section 4.13 - Variable-Length Array
// Unsigned integer length followed by individually XDR encoded array elements
func (enc *Encoder) encodeArray(v reflect.Value, ignoreOpaque bool) (int, error) {
numItems := uint32(v.Len())
n, err := enc.EncodeUint(numItems)
if err != nil {
return n, err
}
n2, err := enc.encodeFixedArray(v, ignoreOpaque)
n += n2
return n, err
}
// encodeStruct writes an XDR encoded representation of each value in the
// exported fields of the struct represented by the passed reflection value to
// the encapsulated writer and returns the number of bytes written. Pointers
// are automatically indirected through arbitrary depth to encode the actual
// value pointed to.
//
// A MarshalError is returned if any issues are encountered while encoding
// the elements.
//
// Reference:
// RFC Section 4.14 - Structure
// XDR encoded elements in the order of their declaration in the struct
func (enc *Encoder) encodeStruct(v reflect.Value) (int, error) {
var n int
vt := v.Type()
for i := 0; i < v.NumField(); i++ {
// Skip unexported fields and indirect through pointers.
vtf := vt.Field(i)
if vtf.PkgPath != "" {
continue
}
vf := v.Field(i)
vf = enc.indirect(vf)
// Handle non-opaque data to []uint8 and [#]uint8 based on struct tag.
tag := vtf.Tag.Get("xdropaque")
if tag == "false" {
switch vf.Kind() {
case reflect.Slice:
n2, err := enc.encodeArray(vf, true)
n += n2
if err != nil {
return n, err
}
continue
case reflect.Array:
n2, err := enc.encodeFixedArray(vf, true)
n += n2
if err != nil {
return n, err
}
continue
}
}
// Encode each struct field.
n2, err := enc.encode(vf)
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// RFC Section 4.15 - Discriminated Union
// RFC Section 4.16 - Void
// RFC Section 4.17 - Constant
// RFC Section 4.18 - Typedef
// RFC Section 4.19 - Optional data
// RFC Sections 4.15 though 4.19 only apply to the data specification language
// which is not implemented by this package. In the case of discriminated
// unions, struct tags are used to perform a similar function.
// encodeMap treats the map represented by the passed reflection value as a
// variable-length array of 2-element structures whose fields are of the same
// type as the map keys and elements and writes its XDR encoded representation
// to the encapsulated writer. It returns the number of bytes written.
//
// A MarshalError is returned if any issues are encountered while encoding
// the elements.
func (enc *Encoder) encodeMap(v reflect.Value) (int, error) {
// Number of elements.
n, err := enc.EncodeUint(uint32(v.Len()))
if err != nil {
return n, err
}
// Encode each key and value according to their type.
for _, key := range v.MapKeys() {
n2, err := enc.encode(key)
n += n2
if err != nil {
return n, err
}
n2, err = enc.encode(v.MapIndex(key))
n += n2
if err != nil {
return n, err
}
}
return n, nil
}
// encodeInterface examines the interface represented by the passed reflection
// value to detect whether it is an interface that can be encoded if it is,
// extracts the underlying value to pass back into the encode function for
// encoding according to its type.
//
// A MarshalError is returned if any issues are encountered while encoding
// the interface.
func (enc *Encoder) encodeInterface(v reflect.Value) (int, error) {
if v.IsNil() || !v.CanInterface() {
msg := fmt.Sprintf("can't encode nil interface")
err := marshalError("encodeInterface", ErrNilInterface, msg,
nil, nil)
return 0, err
}
// Extract underlying value from the interface and indirect through pointers.
ve := reflect.ValueOf(v.Interface())
ve = enc.indirect(ve)
return enc.encode(ve)
}
// encode is the main workhorse for marshalling via reflection. It uses
// the passed reflection value to choose the XDR primitives to encode into
// the encapsulated writer and returns the number of bytes written. It is a
// recursive function, so cyclic data structures are not supported and will
// result in an infinite loop.
func (enc *Encoder) encode(v reflect.Value) (int, error) {
if !v.IsValid() {
msg := fmt.Sprintf("type '%s' is not valid", v.Kind().String())
err := marshalError("encode", ErrUnsupportedType, msg, nil, nil)
return 0, err
}
// Indirect through pointers to get at the concrete value.
ve := enc.indirect(v)
// Handle time.Time values by encoding them as an RFC3339 formatted
// string with nanosecond precision. Check the type string before
// doing a full blown conversion to interface and type assertion since
// checking a string is much quicker.
if ve.Type().String() == "time.Time" && ve.CanInterface() {
viface := ve.Interface()
if tv, ok := viface.(time.Time); ok {
return enc.EncodeString(tv.Format(time.RFC3339Nano))
}
}
// Handle native Go types.
switch ve.Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int:
return enc.EncodeInt(int32(ve.Int()))
case reflect.Int64:
return enc.EncodeHyper(ve.Int())
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint:
return enc.EncodeUint(uint32(ve.Uint()))
case reflect.Uint64:
return enc.EncodeUhyper(ve.Uint())
case reflect.Bool:
return enc.EncodeBool(ve.Bool())
case reflect.Float32:
return enc.EncodeFloat(float32(ve.Float()))
case reflect.Float64:
return enc.EncodeDouble(ve.Float())
case reflect.String:
return enc.EncodeString(ve.String())
case reflect.Array:
return enc.encodeFixedArray(ve, false)
case reflect.Slice:
return enc.encodeArray(ve, false)
case reflect.Struct:
return enc.encodeStruct(ve)
case reflect.Map:
return enc.encodeMap(ve)
case reflect.Interface:
return enc.encodeInterface(ve)
}
// The only unhandled types left are unsupported. At the time of this
// writing the only remaining unsupported types that exist are
// reflect.Uintptr and reflect.UnsafePointer.
msg := fmt.Sprintf("unsupported Go type '%s'", ve.Kind().String())
err := marshalError("encode", ErrUnsupportedType, msg, nil, nil)
return 0, err
}
// indirect dereferences pointers until it reaches a non-pointer. This allows
// transparent encoding through arbitrary levels of indirection.
func (enc *Encoder) indirect(v reflect.Value) reflect.Value {
rv := v
for rv.Kind() == reflect.Ptr {
rv = rv.Elem()
}
return rv
}
// Encode operates identically to the Marshal function with the exception of
// using the writer associated with the Encoder for the destination of the
// XDR-encoded data instead of a user-supplied writer. See the Marshal
// documentation for specifics.
func (enc *Encoder) Encode(v interface{}) (int, error) {
if v == nil {
msg := "can't marshal nil interface"
err := marshalError("Marshal", ErrNilInterface, msg, nil, nil)
return 0, err
}
vv := reflect.ValueOf(v)
vve := vv
for vve.Kind() == reflect.Ptr {
if vve.IsNil() {
msg := fmt.Sprintf("can't marshal nil pointer '%v'",
vv.Type().String())
err := marshalError("Marshal", ErrBadArguments, msg,
nil, nil)
return 0, err
}
vve = vve.Elem()
}
return enc.encode(vve)
}
// NewEncoder returns an object that can be used to manually choose fields to
// XDR encode to the passed writer w. Typically, Marshal should be used instead
// of manually creating an Encoder. An Encoder, along with several of its
// methods to encode XDR primitives, is exposed so it is possible to perform
// manual encoding of data without relying on reflection should it be necessary
// in complex scenarios where automatic reflection-based encoding won't work.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{w: w}
}
|