1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
// Copyright 2017 The go-libvirt Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lvgen
import (
"fmt"
"go/ast"
"io"
"os"
"strconv"
"strings"
"text/template"
"unicode"
"unicode/utf8"
"golang.org/x/tools/go/loader"
)
// If you're making changes to the generator, or troubleshooting the generated
// code, the docs for sunrpc and xdr (the line encoding) are helpful:
// https://docs.oracle.com/cd/E26502_01/html/E35597/
// ConstItem stores an const's symbol and value from the parser. This struct is
// also used for enums.
type ConstItem struct {
Name string
LVName string
Val string
}
// Generator holds all the information parsed out of the protocol file.
type Generator struct {
// Enums holds the enum declarations. The type of enums is always int32.
Enums []Decl
// EnumVals holds the list of enum values found by the parser. In sunrpc as
// in go, these are not separately namespaced.
EnumVals []ConstItem
// Consts holds all the const items found by the parser.
Consts []ConstItem
// Structs holds a list of all the structs found by the parser
Structs []Structure
// StructMap is a map of the structs we find for quick searching.
StructMap map[string]int
// Typedefs holds all the type definitions from 'typedef ...' lines.
Typedefs []Typedef
// Unions holds all the discriminated unions.
Unions []Union
// UnionMap is a map of the unions we find for quick searching.
UnionMap map[string]int
// Procs holds all the discovered libvirt procedures.
Procs []Proc
}
func newGenerator() Generator {
return Generator{
StructMap: make(map[string]int),
UnionMap: make(map[string]int),
}
}
// Gen accumulates items as the parser runs, and is then used to produce the
// output.
var Gen Generator
// CurrentEnumVal is the auto-incrementing value assigned to enums that aren't
// explicitly given a value.
var CurrentEnumVal int64
// goEquivTypes maps the basic types defined in the rpc spec to their golang
// equivalents.
var goEquivTypes = map[string]string{
// Some of the identifiers in the rpc specification are reserved words or
// pre-existing types in go. This renames them to something safe.
"type": "lvtype",
"error": "lverror",
"nil": "lvnil",
// The libvirt spec uses this NonnullString type, which is a string with a
// specified maximum length. This makes the go code more confusing, and
// we're not enforcing the limit anyway, so collapse it here. This also
// requires us to ditch the typedef that would otherwise be generated.
"NonnullString": "string",
// We rename Error to remote_error in order to use libvirt.Error as the exposed
// type, only with necessary fields exposed
"Error": "remote_error",
// TODO: Get rid of these. They're only needed because we lose information
// that the parser has (the parser knows it has emitted a go type), and then
// we capitalize types to make them public.
"Int": "int",
"Uint": "uint",
"Int8": "int8",
"Uint8": "uint8",
"Int16": "int16",
"Uint16": "uint16",
"Int32": "int32",
"Uint32": "uint32",
"Int64": "int64",
"Uint64": "uint64",
"Float32": "float32",
"Float64": "float64",
"Bool": "bool",
"Byte": "byte",
}
// These defines are from libvirt-common.h. They should be fetched from there,
// but for now they're hardcoded here. (These are the discriminant values for
// TypedParams.)
var lvTypedParams = map[string]uint32{
"VIR_TYPED_PARAM_INT": 1,
"VIR_TYPED_PARAM_UINT": 2,
"VIR_TYPED_PARAM_LLONG": 3,
"VIR_TYPED_PARAM_ULLONG": 4,
"VIR_TYPED_PARAM_DOUBLE": 5,
"VIR_TYPED_PARAM_BOOLEAN": 6,
"VIR_TYPED_PARAM_STRING": 7,
}
// Decl records a declaration, like 'int x' or 'remote_nonnull_string str'
type Decl struct {
Name, LVName, Type string
}
// NewDecl returns a new declaration struct.
func NewDecl(identifier, itype string) *Decl {
goidentifier := identifierTransform(identifier)
itype = typeTransform(itype)
return &Decl{Name: goidentifier, LVName: identifier, Type: itype}
}
// Structure records the name and members of a struct definition.
type Structure struct {
Name string
LVName string
Members []Decl
}
// Typedef holds the name and underlying type for a typedef.
type Typedef struct {
Decl
}
// Union holds a "discriminated union", which consists of a discriminant, which
// tells you what kind of thing you're looking at, and a number of encodings.
type Union struct {
Name string
DiscriminantType string
Cases []Case
}
// Case holds a single case of a discriminated union.
type Case struct {
CaseName string
DiscriminantVal string
Decl
}
// Proc holds information about a libvirt procedure the parser has found.
type Proc struct {
Program string // The program name. Blank for REMOTE_ procs.
Num int64 // The libvirt procedure number.
Name string // The name of the go func.
LVName string // The name of the libvirt proc this wraps.
Args []Decl // The contents of the args struct for this procedure.
Ret []Decl // The contents of the ret struct for this procedure.
ArgsStruct string // The name of the args struct for this procedure.
RetStruct string // The name of the ret struct for this procedure.
ReadStreamIdx int // The index of read stream in function argument list
WriteStreamIdx int // The index of read stream in function argument list
}
// ProcMeta holds information about a libvirt procedure, and is used during code
// generation.
type ProcMeta struct {
ReadStream int
WriteStream int
}
type structStack []*Structure
// CurrentStruct will point to a struct record if we're in a struct declaration.
// When the parser adds a declaration, it will be added to the open struct if
// there is one.
var CurrentStruct structStack
// Since it's possible to have an embedded struct definition, this implements
// a stack to keep track of the current structure.
func (s *structStack) empty() bool {
return len(*s) == 0
}
func (s *structStack) push(st *Structure) {
*s = append(*s, st)
}
func (s *structStack) pop() *Structure {
if s.empty() {
return nil
}
st := (*s)[len(*s)-1]
*s = (*s)[:len(*s)-1]
return st
}
func (s *structStack) peek() *Structure {
if s.empty() {
return nil
}
return (*s)[len(*s)-1]
}
// CurrentTypedef will point to a typedef record if we're parsing one. Typedefs
// can define a struct or union type, but the preferred for is struct xxx{...},
// so we may never see the typedef form in practice.
var CurrentTypedef *Typedef
// CurrentUnion holds the current discriminated union record.
var CurrentUnion *Union
// CurrentCase holds the current case record while the parser is in a union and
// a case statement.
var CurrentCase *Case
// Generate will output go bindings for libvirt. The lvPath parameter should be
// the path to the root of the libvirt source directory to use for the
// generation.
func Generate(name string, proto io.Reader) error {
// Start with a clean state
Gen = newGenerator()
lexer, err := NewLexer(proto)
if err != nil {
return err
}
go lexer.Run()
parser := yyNewParser()
yyErrorVerbose = true
// Turn this on if you're debugging.
// yyDebug = 3
rv := parser.Parse(lexer)
if rv != 0 {
return fmt.Errorf("failed to parse libvirt protocol: %v", rv)
}
// When parsing is done, we can link the procedures we've found to their
// argument types.
procLink()
// Generate and write the output.
constsName := fmt.Sprintf("../constants/%v.gen.go", name)
constFile, err := os.Create(constsName)
if err != nil {
return err
}
defer constFile.Close()
procName := fmt.Sprintf("../../%v.gen.go", name)
procFile, err := os.Create(procName)
if err != nil {
return err
}
defer procFile.Close()
return genGo(constFile, procFile)
}
// genGo is called when the parsing is done; it generates the golang output
// files using templates.
func genGo(constFile, procFile io.Writer) error {
t, err := template.ParseFiles("constants.tmpl")
if err != nil {
return err
}
if err = t.Execute(constFile, Gen); err != nil {
return err
}
t, err = template.ParseFiles("procedures.tmpl")
if err != nil {
return err
}
return t.Execute(procFile, Gen)
}
// constNameTransform changes an upcased, snake-style name like
// REMOTE_PROTOCOL_VERSION to a comfortable Go name like ProtocolVersion. It
// also tries to upcase abbreviations so a name like DOMAIN_GET_XML becomes
// DomainGetXML, not DomainGetXml.
func constNameTransform(name string) string {
decamelize := strings.ContainsRune(name, '_')
name = strings.TrimPrefix(name, "REMOTE_")
if decamelize {
name = fromSnakeToCamel(name)
}
name = fixAbbrevs(name)
return name
}
// procNameTransform returns a Go name for a remote procedure.
func procNameTransform(name string) string {
// Remove "PROC_" from the name, then transform it like a const name.
nn := strings.Replace(name, "PROC_", "", 1)
return constNameTransform(nn)
}
// procProgramName returns the program associated with a remote procedure.
// Procedure names follow the pattern, "<PROGRAM>_PROC_<PROCEDURE>". This
// returns the <PROGRAM> part, as a camel-cased value. This value will be empty
// for REMOTE_PROC procedures because we trim REMOTE_, but that's OK.
func procProgramName(name string) string {
ix := strings.Index(name, "PROC_")
return constNameTransform(name[:ix])
}
func identifierTransform(name string) string {
decamelize := strings.ContainsRune(name, '_')
nn := strings.TrimPrefix(name, "remote_")
nn = strings.TrimPrefix(nn, "VIR_")
if decamelize {
nn = fromSnakeToCamel(nn)
} else {
nn = publicize(nn)
}
nn = fixAbbrevs(nn)
nn = checkIdentifier(nn)
// Many types in libvirt are prefixed with "Nonnull" to distinguish them
// from optional values. We add "Opt" to optional values and strip "Nonnull"
// because this makes the go code clearer.
nn = strings.TrimPrefix(nn, "Nonnull")
return nn
}
func typeTransform(name string) string {
nn := strings.TrimLeft(name, "*[]")
diff := len(name) - len(nn)
nn = identifierTransform(nn)
return name[0:diff] + nn
}
func publicize(name string) string {
if len(name) <= 0 {
return name
}
r, n := utf8.DecodeRuneInString(name)
name = string(unicode.ToUpper(r)) + name[n:]
return name
}
// fromSnakeToCamel transmutes a snake-cased string to a camel-cased one. All
// runes that follow an underscore are up-cased, and the underscores themselves
// are omitted.
//
// ex: "PROC_DOMAIN_GET_METADATA" -> "ProcDomainGetMetadata"
func fromSnakeToCamel(s string) string {
buf := make([]rune, 0, len(s))
// Start rune will be upper case - we generate all public symbols.
hump := true
for _, r := range s {
if r == '_' {
hump = true
} else {
var transform func(rune) rune
if hump == true {
transform = unicode.ToUpper
} else {
transform = unicode.ToLower
}
buf = append(buf, transform(r))
hump = false
}
}
return string(buf)
}
// abbrevs is a list of abbreviations which should be all upper-case in a name.
// (This is really just to keep the go linters happy and to produce names that
// are intuitive to a go developer.)
var abbrevs = []string{"Xml", "Io", "Uuid", "Cpu", "Id", "Ip", "Qemu"}
// fixAbbrevs up-cases all instances of anything in the 'abbrevs' array. This
// would be a simple matter, but we don't want to upcase an abbreviation if it's
// actually part of a larger word, so it's not so simple.
func fixAbbrevs(s string) string {
for _, a := range abbrevs {
for loc := 0; ; {
loc = strings.Index(s[loc:], a)
if loc == -1 {
break
}
r := 'A'
if len(a) < len(s[loc:]) {
r, _ = utf8.DecodeRune([]byte(s[loc+len(a):]))
}
if unicode.IsLower(r) == false {
s = s[:loc] + strings.Replace(s[loc:], a, strings.ToUpper(a), 1)
}
loc++
}
}
return s
}
// procLink associates a libvirt procedure with the types that are its arguments
// and return values, filling out those fields in the procedure struct. These
// types are extracted by iterating through the argument and return structures
// defined in the protocol file. If one or both of these structs is not defined
// then either the args or return values are empty.
func procLink() {
flagTypes := mapFlagTypes()
for ix, proc := range Gen.Procs {
argsName := proc.Name + "Args"
retName := proc.Name + "Ret"
argsIx, hasArgs := Gen.StructMap[argsName]
retIx, hasRet := Gen.StructMap[retName]
if hasArgs {
argsStruct := Gen.Structs[argsIx]
Gen.Procs[ix].ArgsStruct = argsStruct.Name
changeFlagType(proc.Name, &argsStruct, flagTypes)
Gen.Procs[ix].Args = argsStruct.Members
}
if hasRet {
retStruct := Gen.Structs[retIx]
Gen.Procs[ix].RetStruct = retStruct.Name
Gen.Procs[ix].Ret = retStruct.Members
}
}
}
// mapFlagTypes builds a map of the C types which appear to correspond to the
// various flags fields in libvirt calls. Determining whether a type actually
// corresponds to a set of flags is done by pattern matching the type name;
// libvirt isn't completely consistent about the names of flag types, but they
// all seem to have one of three suffixes, so that's what we look for here.
//
// This code uses the loader package to load the constants file generated by
// c-for-go, which runs against libvirt's C sources. This file is generated by
// 'go generate ./...' prior to the lvgen/ generator being run.
func mapFlagTypes() map[string]ast.Expr {
pconf := loader.Config{}
f, err := pconf.ParseFile("../../const.gen.go", nil)
if err != nil {
panic(fmt.Sprintln("failed to read constants file: ", err))
}
pconf.CreateFromFiles("const", f)
prog, err := pconf.Load()
if err != nil {
panic(fmt.Sprintln("failed to load package: ", err))
}
cpkg := prog.Package("const")
tmap := make(map[string]ast.Expr)
ast.Inspect(cpkg.Files[0], func(n ast.Node) bool {
switch t := n.(type) {
case *ast.TypeSpec:
// There isn't a single name pattern that covers all of the flag
// types, so we'll collect all the types that map to int32 here.
if fmt.Sprintf("%s", t.Type) == "int32" {
tmap[t.Name.String()] = t.Type
}
}
return true
})
return tmap
}
// Many libvirt calls use flags whose values come from a set of definitions
// whose name we can't predict. So this map exists to do the translation for us.
// The only way to remove this fragile map would be to use the comments from the
// .c files in libvirt, which contain doxygen-style parameter comments that
// specify the valid value types for flags.
var flagMap = map[string]string{
"ConnectOpen": "ConnectFlags",
"DomainAddIothread": "DomainModificationImpact",
"DomainCoreDumpWithFormat": "DomainCoreDumpFlags",
"DomainCreateXML": "DomainCreateFlags",
"DomainCreateWithFiles": "DomainCreateFlags",
"DomainCreateXMLWithFiles": "DomainCreateFlags",
"DomainDefineXMLFlags": "DomainDefineFlags",
"DomainDelIothread": "DomainModificationImpact",
"DomainDestroyFlags": "DomainDestroyFlagsValues",
"DomainGetCPUStats": "TypedParameterFlags",
"DomainGetEmulatorPinInfo": "DomainModificationImpact",
"DomainGetInterfaceParameters": "DomainModificationImpact",
"DomainGetIothreadInfo": "DomainModificationImpact",
"DomainGetMetadata": "DomainModificationImpact",
"DomainGetPerfEvents": "DomainModificationImpact",
"DomainGetXMLDesc": "DomainXMLFlags",
"DomainManagedSaveDefineXML": "DomainSaveRestoreFlags",
"DomainManagedSaveGetXMLDesc": "DomainXMLFlags",
"DomainMemoryPeek": "DomainMemoryFlags",
"DomainMigratePerform3Params": "DomainMigrateFlags",
"DomainOpenChannel": "DomainChannelFlags",
"DomainOpenGraphicsFd": "DomainOpenGraphicsFlags",
"DomainPinEmulator": "DomainModificationImpact",
"DomainPinIothread": "DomainModificationImpact",
"DomainSetLifecycleAction": "DomainModificationImpact",
"DomainSetMemoryStatsPeriod": "DomainMemoryModFlags",
"DomainSetMetadata": "DomainModificationImpact",
"DomainSetPerfEvents": "DomainModificationImpact",
"DomainSetVcpu": "DomainModificationImpact",
"DomainShutdownFlags": "DomainShutdownFlagValues",
"DomainUndefineFlags": "DomainUndefineFlagsValues",
"DomainUpdateDeviceFlags": "DomainDeviceModifyFlags",
"StoragePoolCreateXML": "StoragePoolCreateFlags",
"StoragePoolGetXMLDesc": "StorageXMLFlags",
"StorageVolCreateXML": "StorageVolCreateFlags",
"StorageVolCreateXMLFrom": "StorageVolCreateFlags",
}
// findFlagType attempts to find a real type for the flags passed to a given
// libvirt routine.
func findFlagType(procName string, flagTypes map[string]ast.Expr) (string, bool) {
flagName, ok := flagMap[procName]
if ok {
// Verify the mapped name exists
if _, ok = flagTypes[flagName]; ok == false {
// If one of the manual flag mappings is wrong, complain but
// continue. This happens with older versions of libvirt.
fmt.Printf("manual flag type %v for %v not found, continuing", flagName, procName)
return "", false
}
return flagName, true
}
// Not in the manual map, so do a search using the 3 patterns libvirt uses.
tnames := [...]string{procName + "Flags", procName + "FlagValues", procName + "FlagsValues"}
for _, n := range tnames {
if _, ok := flagTypes[n]; ok == true {
return n, true
}
}
return "", false
}
// changeFlagType looks up the go type for a libvirt call's flags field. In C
// these flags are all uint32, and you have to consult the documentation to
// determine what the valid set of flags is for a given libvirt call. For Go
// we're attempting to do better by specifying an actual type so that the
// possible values are easier to determine. This is a heuristic, however, based
// on naming patterns in the libvirt code. To do better we would need to look at
// the doxygen-style comments in the libvirt sources.
//
// Failing to find a flags type isn't a fatal error, it just means that we'll
// leave the flags with a type of uint32.
func changeFlagType(procName string, s *Structure, flagTypes map[string]ast.Expr) {
for ix, d := range s.Members {
if d.Name == "Flags" {
tname, found := findFlagType(procName, flagTypes)
if found {
s.Members[ix].Type = tname
} else {
// If you're adding procedures to to the manual map, you may
// want to uncomment this to see what flag types are not found.
// fmt.Println("flags type for", procName, "not found")
}
}
}
}
//---------------------------------------------------------------------------
// Routines called by the parser's actions.
//---------------------------------------------------------------------------
// StartEnum is called when the parser has found a valid enum.
func StartEnum(name string) {
// Enums are always signed 32-bit integers.
goname := identifierTransform(name)
Gen.Enums = append(Gen.Enums, Decl{goname, name, "int32"})
// Set the automatic value var to -1; it will be incremented before being
// assigned to an enum value.
CurrentEnumVal = -1
}
// AddEnumVal will add a new enum value to the list.
func AddEnumVal(name, val string) error {
ev, err := parseNumber(val)
if err != nil {
return fmt.Errorf("invalid enum value %v = %v", name, val)
}
return addEnumVal(name, ev, nil)
}
// AddProcEnumVal adds a procedure enum to our list of remote procedures which
// we will later generate code for. These declarations look like enums, but have
// a (currently optional) comment block above them which we partially parse for
// information about the procedure's in/output streams. Metadata is parsed from
// annotations in libvirt RPC description file that are in block comment
// preceding every function in enum, it looks like this:
//
// /**
// * @generate: both
// * @readstream: 1
// * @sparseflag: VIR_STORAGE_VOL_DOWNLOAD_SPARSE_STREAM
// * @acl: storage_vol:data_read
// */
//
// See full description of possible annotations in libvirt's
// src/remote/remote_protocol.x at the top of remote_procedure enum. We're
// parsing only @readstream and @writestream annotations at the moment.
func AddProcEnumVal(name, val string, meta string) error {
ev, err := parseNumber(val)
if err != nil {
return fmt.Errorf("invalid enum value %v = %v", name, val)
}
metaObj, err := parseMeta(meta)
if err != nil {
return fmt.Errorf("invalid metadata for enum value %v: %v", name, err)
}
// Confusingly, the procedure name we use for generating code has "Proc"
// stripped, but the name of the enum does not.
program := procProgramName(name)
procName := procNameTransform(name)
enumName := constNameTransform(name)
Gen.EnumVals = append(Gen.EnumVals, ConstItem{enumName, name, strconv.FormatInt(ev, 10)})
CurrentEnumVal = ev
proc := &Proc{Program: program, Num: ev, Name: procName,
LVName: name, ReadStreamIdx: -1, WriteStreamIdx: -1}
if metaObj != nil {
proc.ReadStreamIdx = metaObj.ReadStream
proc.WriteStreamIdx = metaObj.WriteStream
}
Gen.Procs = append(Gen.Procs, *proc)
return nil
}
// AddEnumAutoVal adds an enum to the list, using the automatically-incremented
// value. This is called when the parser finds an enum definition without an
// explicit value.
func AddEnumAutoVal(name string) error {
CurrentEnumVal++
return addEnumVal(name, CurrentEnumVal, nil)
}
func addEnumVal(name string, val int64, meta *ProcMeta) error {
goname := constNameTransform(name)
Gen.EnumVals = append(Gen.EnumVals, ConstItem{goname, name, fmt.Sprintf("%d", val)})
CurrentEnumVal = val
return nil
}
// AddConst adds a new constant to the parser's list.
func AddConst(name, val string) error {
_, err := parseNumber(val)
if err != nil {
return fmt.Errorf("invalid const value %v = %v", name, val)
}
goname := constNameTransform(name)
Gen.Consts = append(Gen.Consts, ConstItem{goname, name, val})
return nil
}
// parseNumber makes sure that a parsed numerical value can be parsed to a 64-
// bit integer.
func parseNumber(val string) (int64, error) {
base := 10
if strings.HasPrefix(val, "0x") {
base = 16
val = val[2:]
}
n, err := strconv.ParseInt(val, base, 64)
return n, err
}
// parseMeta parses procedure metadata to simple string mapping
func parseMeta(meta string) (*ProcMeta, error) {
res := &ProcMeta{
ReadStream: -1,
WriteStream: -1,
}
for _, line := range strings.Split(meta, "\n") {
atInd := strings.Index(line, "@")
if atInd == -1 {
// Should be only first and last line of comment
continue
}
spl := strings.SplitN(line[atInd+1:], ":", 2)
if len(spl) != 2 {
return nil, fmt.Errorf("invalid annotation: %s", meta)
}
spl[1] = strings.Trim(spl[1], " ")
switch spl[0] {
case "readstream":
var err error
res.ReadStream, err = strconv.Atoi(spl[1])
if err != nil {
return nil, fmt.Errorf("invalid value for readstream: %s", spl[1])
}
case "writestream":
var err error
res.WriteStream, err = strconv.Atoi(spl[1])
if err != nil {
return nil, fmt.Errorf("invalid value for writestream: %s", spl[1])
}
}
}
return res, nil
}
// StartStruct is called from the parser when a struct definition is found, but
// before the member declarations are processed.
func StartStruct(name string) {
goname := identifierTransform(name)
CurrentStruct.push(&Structure{Name: goname, LVName: name})
}
// AddStruct is called when the parser has finished parsing a struct. It adds
// the now-complete struct definition to the generator's list.
func AddStruct() {
st := *CurrentStruct.pop()
Gen.StructMap[st.Name] = len(Gen.Structs)
Gen.Structs = append(Gen.Structs, st)
}
// StartTypedef is called when the parser finds a typedef.
func StartTypedef() {
CurrentTypedef = &Typedef{}
}
// StartUnion is called by the parser when it finds a union declaraion.
func StartUnion(name string) {
name = identifierTransform(name)
CurrentUnion = &Union{Name: name}
}
// AddUnion is called by the parser when it has finished processing a union
// type. It adds the union to the generator's list and clears the CurrentUnion
// pointer. We handle unions by declaring an interface for the union type, and
// adding methods to each of the cases so that they satisfy the interface.
func AddUnion() {
Gen.UnionMap[CurrentUnion.Name] = len(Gen.Unions)
Gen.Unions = append(Gen.Unions, *CurrentUnion)
CurrentUnion = nil
}
// StartCase is called when the parser finds a case statement within a union.
func StartCase(dvalue string) {
// In libvirt, the discriminant values are all C pre- processor definitions.
// Since we don't run the C pre-processor on the protocol file, they're
// still just names when we get them - we don't actually have their integer
// values. We'll use the strings to build the type names, although this is
// brittle, because we're defining a type for each of the case values, and
// that type needs a name.
caseName := dvalue
if ix := strings.LastIndexByte(caseName, '_'); ix != -1 {
caseName = caseName[ix+1:]
}
caseName = fromSnakeToCamel(caseName)
dv, ok := lvTypedParams[dvalue]
if ok {
dvalue = strconv.FormatUint(uint64(dv), 10)
}
CurrentCase = &Case{CaseName: caseName, DiscriminantVal: dvalue}
}
// AddCase is called when the parser finishes parsing a case.
func AddCase() {
CurrentUnion.Cases = append(CurrentUnion.Cases, *CurrentCase)
CurrentCase = nil
}
// AddDeclaration is called by the parser when it find a declaration (int x).
// The declaration will be added to any open container (such as a struct, if the
// parser is working through a struct definition.)
func AddDeclaration(identifier, itype string) {
addDecl(NewDecl(identifier, itype))
}
// addDecl adds a declaration to the current container.
func addDecl(decl *Decl) {
if !CurrentStruct.empty() {
st := CurrentStruct.peek()
st.Members = append(st.Members, *decl)
} else if CurrentTypedef != nil {
CurrentTypedef.Name = decl.Name
CurrentTypedef.LVName = decl.LVName
CurrentTypedef.Type = decl.Type
if CurrentTypedef.Name != "string" {
// Omit recursive typedefs. These happen because we're massaging
// some of the type names.
Gen.Typedefs = append(Gen.Typedefs, *CurrentTypedef)
}
CurrentTypedef = nil
} else if CurrentCase != nil {
CurrentCase.Name = decl.Name
CurrentCase.Type = decl.Type
} else if CurrentUnion != nil {
CurrentUnion.DiscriminantType = decl.Type
}
}
// AddFixedArray is called by the parser to add a fixed-length array to the
// current container (struct, union, etc). Fixed-length arrays are not length-
// prefixed.
func AddFixedArray(identifier, itype, len string) {
atype := fmt.Sprintf("[%v]%v", len, itype)
addDecl(NewDecl(identifier, atype))
}
// AddVariableArray is called by the parser to add a variable-length array.
// Variable-length arrays are prefixed with a 32-bit unsigned length, and may
// also have a maximum length specified.
func AddVariableArray(identifier, itype, len string) {
// This code ignores the length restriction (array<MAXLEN>), so as of now we
// can't check to make sure that we're not exceeding that restriction when
// we fill in message buffers. That may not matter, if libvirt's checking is
// careful enough.
atype := "[]" + itype
// Handle strings specially. In the rpcgen definition a string is specified
// as a variable-length array, either with or without a max length. We want
// these to be go strings, so we'll just remove the array specifier.
if itype == "string" {
atype = itype
}
addDecl(NewDecl(identifier, atype))
}
// AddOptValue is called by the parser to add an optional value. These are
// declared in the protocol definition file using a syntax that looks like a
// pointer declaration, but are actually represented by a variable-sized array
// with a maximum size of 1.
func AddOptValue(identifier, itype string) {
atype := "[]" + itype
decl := NewDecl(identifier, atype)
newType := "Opt" + decl.Name
goEquivTypes[decl.Name] = newType
decl.Name = newType
addDecl(decl)
}
// checkIdentifier determines whether an identifier is in our translation list.
// If so it returns the translated name. This is used to massage the type names
// we're emitting.
func checkIdentifier(i string) string {
nn, reserved := goEquivTypes[i]
if reserved {
return nn
}
return i
}
// GetUnion returns the type information for a union. If the provided type name
// isn't a union, this will return a zero-value Union type.
func (decl *Decl) GetUnion() Union {
ix, ok := Gen.UnionMap[decl.Type]
if ok {
return Gen.Unions[ix]
}
return Union{}
}
|