1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
package gift
import (
"image"
"image/draw"
"math"
)
type uweight struct {
u int
weight float32
}
type uvweight struct {
u int
v int
weight float32
}
func prepareConvolutionWeights(kernel []float32, normalize bool) (int, []uvweight) {
size := int(math.Sqrt(float64(len(kernel))))
if size%2 == 0 {
size--
}
if size < 1 {
return 0, []uvweight{}
}
center := size / 2
weights := []uvweight{}
for i := 0; i < size; i++ {
for j := 0; j < size; j++ {
k := j*size + i
w := float32(0)
if k < len(kernel) {
w = kernel[k]
}
if w != 0 {
weights = append(weights, uvweight{u: i - center, v: j - center, weight: w})
}
}
}
if !normalize {
return size, weights
}
var sum, sumpositive float32
for _, w := range weights {
sum += w.weight
if w.weight > 0 {
sumpositive += w.weight
}
}
var div float32
if sum != 0 {
div = sum
} else if sumpositive != 0 {
div = sumpositive
} else {
return size, weights
}
for i := 0; i < len(weights); i++ {
weights[i].weight /= div
}
return size, weights
}
type convolutionFilter struct {
kernel []float32
normalize bool
alpha bool
abs bool
delta float32
}
func (p *convolutionFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *convolutionFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
ksize, weights := prepareConvolutionWeights(p.kernel, p.normalize)
kcenter := ksize / 2
if ksize < 1 {
copyimage(dst, src, options)
return
}
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
// Init temporary rows.
starty := start
rows := make([][]pixel, ksize)
for i := 0; i < ksize; i++ {
rowy := starty + i - kcenter
if rowy < srcb.Min.Y {
rowy = srcb.Min.Y
} else if rowy > srcb.Max.Y-1 {
rowy = srcb.Max.Y - 1
}
row := make([]pixel, srcb.Dx())
pixGetter.getPixelRow(rowy, &row)
rows[i] = row
}
for y := start; y < stop; y++ {
// Calculate dst row.
for x := srcb.Min.X; x < srcb.Max.X; x++ {
var r, g, b, a float32
for _, w := range weights {
wx := x + w.u
if wx < srcb.Min.X {
wx = srcb.Min.X
} else if wx > srcb.Max.X-1 {
wx = srcb.Max.X - 1
}
rowsx := wx - srcb.Min.X
rowsy := kcenter + w.v
px := rows[rowsy][rowsx]
r += px.r * w.weight
g += px.g * w.weight
b += px.b * w.weight
if p.alpha {
a += px.a * w.weight
}
}
if p.abs {
r = absf32(r)
g = absf32(g)
b = absf32(b)
if p.alpha {
a = absf32(a)
}
}
if p.delta != 0 {
r += p.delta
g += p.delta
b += p.delta
if p.alpha {
a += p.delta
}
}
if !p.alpha {
a = rows[kcenter][x-srcb.Min.X].a
}
pixSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, a})
}
// Rotate temporary rows.
if y < stop-1 {
tmprow := rows[0]
for i := 0; i < ksize-1; i++ {
rows[i] = rows[i+1]
}
nextrowy := y + ksize/2 + 1
if nextrowy > srcb.Max.Y-1 {
nextrowy = srcb.Max.Y - 1
}
pixGetter.getPixelRow(nextrowy, &tmprow)
rows[ksize-1] = tmprow
}
}
})
}
// Convolution creates a filter that applies a square convolution kernel to an image.
// The length of the kernel slice must be the square of an odd kernel size (e.g. 9 for 3x3 kernel, 25 for 5x5 kernel).
// Excessive slice members will be ignored.
// If normalize parameter is true, the kernel will be normalized before applying the filter.
// If alpha parameter is true, the alpha component of color will be filtered too.
// If abs parameter is true, absolute values of color components will be taken after doing calculations.
// If delta parameter is not zero, this value will be added to the filtered pixels.
//
// Example:
//
// // Apply the emboss filter to an image.
// g := gift.New(
// gift.Convolution(
// []float32{
// -1, -1, 0,
// -1, 1, 1,
// 0, 1, 1,
// },
// false, false, false, 0,
// ),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func Convolution(kernel []float32, normalize, alpha, abs bool, delta float32) Filter {
return &convolutionFilter{
kernel: kernel,
normalize: normalize,
alpha: alpha,
abs: abs,
delta: delta,
}
}
// prepareConvolutionWeights1d prepares pixel weights using a convolution kernel.
// Weights equal to 0 are excluded.
func prepareConvolutionWeights1d(kernel []float32) (int, []uweight) {
size := len(kernel)
if size%2 == 0 {
size--
}
if size < 1 {
return 0, []uweight{}
}
center := size / 2
weights := []uweight{}
for i := 0; i < size; i++ {
w := float32(0)
if i < len(kernel) {
w = kernel[i]
}
if w != 0 {
weights = append(weights, uweight{i - center, w})
}
}
return size, weights
}
// convolveLine convolves a single line of pixels according to the given weights.
func convolveLine(dstBuf []pixel, srcBuf []pixel, weights []uweight) {
max := len(srcBuf) - 1
if max < 0 {
return
}
for dstu := 0; dstu < len(srcBuf); dstu++ {
var r, g, b, a float32
for _, w := range weights {
k := dstu + w.u
if k < 0 {
k = 0
} else if k > max {
k = max
}
c := srcBuf[k]
wa := c.a * w.weight
r += c.r * wa
g += c.g * wa
b += c.b * wa
a += wa
}
if a != 0 {
r /= a
g /= a
b /= a
}
dstBuf[dstu] = pixel{r, g, b, a}
}
}
// convolve1dv performs a fast vertical 1d convolution.
func convolve1dv(dst draw.Image, src image.Image, kernel []float32, options *Options) {
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if kernel == nil || len(kernel) < 1 {
copyimage(dst, src, options)
return
}
_, weights := prepareConvolutionWeights1d(kernel)
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.X, srcb.Max.X, func(start, stop int) {
srcBuf := make([]pixel, srcb.Dy())
dstBuf := make([]pixel, srcb.Dy())
for x := start; x < stop; x++ {
pixGetter.getPixelColumn(x, &srcBuf)
convolveLine(dstBuf, srcBuf, weights)
pixSetter.setPixelColumn(dstb.Min.X+x-srcb.Min.X, dstBuf)
}
})
}
// convolve1dh performs afast horizontal 1d convolution.
func convolve1dh(dst draw.Image, src image.Image, kernel []float32, options *Options) {
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if kernel == nil || len(kernel) < 1 {
copyimage(dst, src, options)
return
}
_, weights := prepareConvolutionWeights1d(kernel)
pixGetter := newPixelGetter(src)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
srcBuf := make([]pixel, srcb.Dx())
dstBuf := make([]pixel, srcb.Dx())
for y := start; y < stop; y++ {
pixGetter.getPixelRow(y, &srcBuf)
convolveLine(dstBuf, srcBuf, weights)
pixSetter.setPixelRow(dstb.Min.Y+y-srcb.Min.Y, dstBuf)
}
})
}
func gaussianBlurKernel(x, sigma float32) float32 {
return float32(math.Exp(-float64(x*x)/float64(2*sigma*sigma)) / (float64(sigma) * math.Sqrt(2*math.Pi)))
}
type gausssianBlurFilter struct {
sigma float32
}
func (p *gausssianBlurFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *gausssianBlurFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
if p.sigma <= 0 {
copyimage(dst, src, options)
return
}
radius := int(math.Ceil(float64(p.sigma * 3)))
size := 2*radius + 1
center := radius
kernel := make([]float32, size)
kernel[center] = gaussianBlurKernel(0, p.sigma)
sum := kernel[center]
for i := 1; i <= radius; i++ {
f := gaussianBlurKernel(float32(i), p.sigma)
kernel[center-i] = f
kernel[center+i] = f
sum += 2 * f
}
for i := 0; i < len(kernel); i++ {
kernel[i] /= sum
}
tmp := createTempImage(srcb)
convolve1dh(tmp, src, kernel, options)
convolve1dv(dst, tmp, kernel, options)
}
// GaussianBlur creates a filter that applies a gaussian blur to an image.
// The sigma parameter must be positive and indicates how much the image will be blurred.
// Blur affected radius roughly equals 3 * sigma.
//
// Example:
//
// g := gift.New(
// gift.GaussianBlur(1.5),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func GaussianBlur(sigma float32) Filter {
return &gausssianBlurFilter{
sigma: sigma,
}
}
type unsharpMaskFilter struct {
sigma float32
amount float32
threshold float32
}
func (p *unsharpMaskFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func unsharp(orig, blurred, amount, threshold float32) float32 {
dif := (orig - blurred) * amount
if absf32(dif) > absf32(threshold) {
return orig + dif
}
return orig
}
func (p *unsharpMaskFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
blurred := createTempImage(srcb)
blur := GaussianBlur(p.sigma)
blur.Draw(blurred, src, options)
pixGetterOrig := newPixelGetter(src)
pixGetterBlur := newPixelGetter(blurred)
pixelSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
for y := start; y < stop; y++ {
for x := srcb.Min.X; x < srcb.Max.X; x++ {
pxOrig := pixGetterOrig.getPixel(x, y)
pxBlur := pixGetterBlur.getPixel(x, y)
r := unsharp(pxOrig.r, pxBlur.r, p.amount, p.threshold)
g := unsharp(pxOrig.g, pxBlur.g, p.amount, p.threshold)
b := unsharp(pxOrig.b, pxBlur.b, p.amount, p.threshold)
a := unsharp(pxOrig.a, pxBlur.a, p.amount, p.threshold)
pixelSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, a})
}
}
})
}
// UnsharpMask creates a filter that sharpens an image.
// The sigma parameter is used in a gaussian function and affects the radius of effect.
// Sigma must be positive. Sharpen radius roughly equals 3 * sigma.
// The amount parameter controls how much darker and how much lighter the edge borders become. Typically between 0.5 and 1.5.
// The threshold parameter controls the minimum brightness change that will be sharpened. Typically between 0 and 0.05.
//
// Example:
//
// g := gift.New(
// gift.UnsharpMask(1, 1, 0),
// )
// dst := image.NewRGBA(g.Bounds(src.Bounds()))
// g.Draw(dst, src)
//
func UnsharpMask(sigma, amount, threshold float32) Filter {
return &unsharpMaskFilter{
sigma: sigma,
amount: amount,
threshold: threshold,
}
}
type meanFilter struct {
ksize int
disk bool
}
func (p *meanFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *meanFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
ksize := p.ksize
if ksize%2 == 0 {
ksize--
}
if ksize <= 1 {
copyimage(dst, src, options)
return
}
if p.disk {
diskKernel := genDisk(p.ksize)
f := Convolution(diskKernel, true, true, false, 0)
f.Draw(dst, src, options)
} else {
kernel := make([]float32, ksize*ksize)
for i := range kernel {
kernel[i] = 1
}
f := Convolution(kernel, true, true, false, 0)
f.Draw(dst, src, options)
}
}
// Mean creates a local mean image filter.
// Takes an average across a neighborhood for each pixel.
// The ksize parameter is the kernel size. It must be an odd positive integer (for example: 3, 5, 7).
// If the disk parameter is true, a disk-shaped neighborhood will be used instead of a square neighborhood.
func Mean(ksize int, disk bool) Filter {
return &meanFilter{
ksize: ksize,
disk: disk,
}
}
type hvConvolutionFilter struct {
hkernel, vkernel []float32
}
func (p *hvConvolutionFilter) Bounds(srcBounds image.Rectangle) (dstBounds image.Rectangle) {
dstBounds = image.Rect(0, 0, srcBounds.Dx(), srcBounds.Dy())
return
}
func (p *hvConvolutionFilter) Draw(dst draw.Image, src image.Image, options *Options) {
if options == nil {
options = &defaultOptions
}
srcb := src.Bounds()
dstb := dst.Bounds()
if srcb.Dx() <= 0 || srcb.Dy() <= 0 {
return
}
tmph := createTempImage(srcb)
Convolution(p.hkernel, false, false, true, 0).Draw(tmph, src, options)
pixGetterH := newPixelGetter(tmph)
tmpv := createTempImage(srcb)
Convolution(p.vkernel, false, false, true, 0).Draw(tmpv, src, options)
pixGetterV := newPixelGetter(tmpv)
pixSetter := newPixelSetter(dst)
parallelize(options.Parallelization, srcb.Min.Y, srcb.Max.Y, func(start, stop int) {
for y := start; y < stop; y++ {
for x := srcb.Min.X; x < srcb.Max.X; x++ {
pxh := pixGetterH.getPixel(x, y)
pxv := pixGetterV.getPixel(x, y)
r := sqrtf32(pxh.r*pxh.r + pxv.r*pxv.r)
g := sqrtf32(pxh.g*pxh.g + pxv.g*pxv.g)
b := sqrtf32(pxh.b*pxh.b + pxv.b*pxv.b)
pixSetter.setPixel(dstb.Min.X+x-srcb.Min.X, dstb.Min.Y+y-srcb.Min.Y, pixel{r, g, b, pxh.a})
}
}
})
}
// Sobel creates a filter that applies a sobel operator to an image.
func Sobel() Filter {
return &hvConvolutionFilter{
hkernel: []float32{-1, 0, 1, -2, 0, 2, -1, 0, 1},
vkernel: []float32{-1, -2, -1, 0, 0, 0, 1, 2, 1},
}
}
|