1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
package imaging
import (
"image"
)
// ConvolveOptions are convolution parameters.
type ConvolveOptions struct {
// If Normalize is true the kernel is normalized before convolution.
Normalize bool
// If Abs is true the absolute value of each color channel is taken after convolution.
Abs bool
// Bias is added to each color channel value after convolution.
Bias int
}
// Convolve3x3 convolves the image with the specified 3x3 convolution kernel.
// Default parameters are used if a nil *ConvolveOptions is passed.
func Convolve3x3(img image.Image, kernel [9]float64, options *ConvolveOptions) *image.NRGBA {
return convolve(img, kernel[:], options)
}
// Convolve5x5 convolves the image with the specified 5x5 convolution kernel.
// Default parameters are used if a nil *ConvolveOptions is passed.
func Convolve5x5(img image.Image, kernel [25]float64, options *ConvolveOptions) *image.NRGBA {
return convolve(img, kernel[:], options)
}
func convolve(img image.Image, kernel []float64, options *ConvolveOptions) *image.NRGBA {
src := toNRGBA(img)
w := src.Bounds().Max.X
h := src.Bounds().Max.Y
dst := image.NewNRGBA(image.Rect(0, 0, w, h))
if w < 1 || h < 1 {
return dst
}
if options == nil {
options = &ConvolveOptions{}
}
if options.Normalize {
normalizeKernel(kernel)
}
type coef struct {
x, y int
k float64
}
var coefs []coef
var m int
switch len(kernel) {
case 9:
m = 1
case 25:
m = 2
}
i := 0
for y := -m; y <= m; y++ {
for x := -m; x <= m; x++ {
if kernel[i] != 0 {
coefs = append(coefs, coef{x: x, y: y, k: kernel[i]})
}
i++
}
}
parallel(0, h, func(ys <-chan int) {
for y := range ys {
for x := 0; x < w; x++ {
var r, g, b float64
for _, c := range coefs {
ix := x + c.x
if ix < 0 {
ix = 0
} else if ix >= w {
ix = w - 1
}
iy := y + c.y
if iy < 0 {
iy = 0
} else if iy >= h {
iy = h - 1
}
off := iy*src.Stride + ix*4
r += float64(src.Pix[off+0]) * c.k
g += float64(src.Pix[off+1]) * c.k
b += float64(src.Pix[off+2]) * c.k
}
if options.Abs {
if r < 0 {
r = -r
}
if g < 0 {
g = -g
}
if b < 0 {
b = -b
}
}
if options.Bias != 0 {
r += float64(options.Bias)
g += float64(options.Bias)
b += float64(options.Bias)
}
srcOff := y*src.Stride + x*4
dstOff := y*dst.Stride + x*4
dst.Pix[dstOff+0] = clamp(r)
dst.Pix[dstOff+1] = clamp(g)
dst.Pix[dstOff+2] = clamp(b)
dst.Pix[dstOff+3] = src.Pix[srcOff+3]
}
}
})
return dst
}
func normalizeKernel(kernel []float64) {
var sum, sumpos float64
for i := range kernel {
sum += kernel[i]
if kernel[i] > 0 {
sumpos += kernel[i]
}
}
if sum != 0 {
for i := range kernel {
kernel[i] /= sum
}
} else if sumpos != 0 {
for i := range kernel {
kernel[i] /= sumpos
}
}
}
|