1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
# Imaging
[](https://godoc.org/github.com/disintegration/imaging)
[](https://travis-ci.org/disintegration/imaging)
[](https://coveralls.io/github/disintegration/imaging?branch=master)
[](https://goreportcard.com/report/github.com/disintegration/imaging)
Package imaging provides basic image processing functions (resize, rotate, crop, brightness/contrast adjustments, etc.).
All the image processing functions provided by the package accept any image type that implements `image.Image` interface
as an input, and return a new image of `*image.NRGBA` type (32bit RGBA colors, non-premultiplied alpha).
## Installation
go get -u github.com/disintegration/imaging
## Documentation
http://godoc.org/github.com/disintegration/imaging
## Usage examples
A few usage examples can be found below. See the documentation for the full list of supported functions.
### Image resizing
```go
// Resize srcImage to size = 128x128px using the Lanczos filter.
dstImage128 := imaging.Resize(srcImage, 128, 128, imaging.Lanczos)
// Resize srcImage to width = 800px preserving the aspect ratio.
dstImage800 := imaging.Resize(srcImage, 800, 0, imaging.Lanczos)
// Scale down srcImage to fit the 800x600px bounding box.
dstImageFit := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
// Resize and crop the srcImage to fill the 100x100px area.
dstImageFill := imaging.Fill(srcImage, 100, 100, imaging.Center, imaging.Lanczos)
```
Imaging supports image resizing using various resampling filters. The most notable ones:
- `Lanczos` - A high-quality resampling filter for photographic images yielding sharp results.
- `CatmullRom` - A sharp cubic filter that is faster than Lanczos filter while providing similar results.
- `MitchellNetravali` - A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
- `Linear` - Bilinear resampling filter, produces smooth output. Faster than cubic filters.
- `Box` - Simple and fast averaging filter appropriate for downscaling. When upscaling it's similar to NearestNeighbor.
- `NearestNeighbor` - Fastest resampling filter, no antialiasing.
The full list of supported filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. Custom filters can be created using ResampleFilter struct.
**Resampling filters comparison**
Original image:

The same image resized from 600x400px to 150x100px using different resampling filters.
From faster (lower quality) to slower (higher quality):
Filter | Resize result
--------------------------|---------------------------------------------
`imaging.NearestNeighbor` | 
`imaging.Linear` | 
`imaging.CatmullRom` | 
`imaging.Lanczos` | 
### Gaussian Blur
```go
dstImage := imaging.Blur(srcImage, 0.5)
```
Sigma parameter allows to control the strength of the blurring effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|----------------------------------------|---------------------------------------
 |  | 
### Sharpening
```go
dstImage := imaging.Sharpen(srcImage, 0.5)
```
`Sharpen` uses gaussian function internally. Sigma parameter allows to control the strength of the sharpening effect.
Original image | Sigma = 0.5 | Sigma = 1.5
-----------------------------------|-------------------------------------------|------------------------------------------
 |  | 
### Gamma correction
```go
dstImage := imaging.AdjustGamma(srcImage, 0.75)
```
Original image | Gamma = 0.75 | Gamma = 1.25
-----------------------------------|------------------------------------------|-----------------------------------------
 |  | 
### Contrast adjustment
```go
dstImage := imaging.AdjustContrast(srcImage, 20)
```
Original image | Contrast = 15 | Contrast = -15
-----------------------------------|--------------------------------------------|-------------------------------------------
 |  | 
### Brightness adjustment
```go
dstImage := imaging.AdjustBrightness(srcImage, 20)
```
Original image | Brightness = 10 | Brightness = -10
-----------------------------------|----------------------------------------------|---------------------------------------------
 |  | 
### Saturation adjustment
```go
dstImage := imaging.AdjustSaturation(srcImage, 20)
```
Original image | Saturation = 30 | Saturation = -30
-----------------------------------|----------------------------------------------|---------------------------------------------
 |  | 
## FAQ
### Incorrect image orientation after processing (e.g. an image appears rotated after resizing)
Most probably, the given image contains the EXIF orientation tag.
The stadard `image/*` packages do not support loading and saving
this kind of information. To fix the issue, try opening images with
the `AutoOrientation` decode option. If this option is set to `true`,
the image orientation is changed after decoding, according to the
orientation tag (if present). Here's the example:
```go
img, err := imaging.Open("test.jpg", imaging.AutoOrientation(true))
```
### What's the difference between `imaging` and `gift` packages?
[imaging](https://github.com/disintegration/imaging)
is designed to be a lightweight and simple image manipulation package.
It provides basic image processing functions and a few helper functions
such as `Open` and `Save`. It consistently returns *image.NRGBA image
type (8 bits per channel, RGBA).
[gift](https://github.com/disintegration/gift)
supports more advanced image processing, for example, sRGB/Linear color
space conversions. It also supports different output image types
(e.g. 16 bits per channel) and provides easy-to-use API for chaining
multiple processing steps together.
## Example code
```go
package main
import (
"image"
"image/color"
"log"
"github.com/disintegration/imaging"
)
func main() {
// Open a test image.
src, err := imaging.Open("testdata/flowers.png")
if err != nil {
log.Fatalf("failed to open image: %v", err)
}
// Crop the original image to 300x300px size using the center anchor.
src = imaging.CropAnchor(src, 300, 300, imaging.Center)
// Resize the cropped image to width = 200px preserving the aspect ratio.
src = imaging.Resize(src, 200, 0, imaging.Lanczos)
// Create a blurred version of the image.
img1 := imaging.Blur(src, 5)
// Create a grayscale version of the image with higher contrast and sharpness.
img2 := imaging.Grayscale(src)
img2 = imaging.AdjustContrast(img2, 20)
img2 = imaging.Sharpen(img2, 2)
// Create an inverted version of the image.
img3 := imaging.Invert(src)
// Create an embossed version of the image using a convolution filter.
img4 := imaging.Convolve3x3(
src,
[9]float64{
-1, -1, 0,
-1, 1, 1,
0, 1, 1,
},
nil,
)
// Create a new image and paste the four produced images into it.
dst := imaging.New(400, 400, color.NRGBA{0, 0, 0, 0})
dst = imaging.Paste(dst, img1, image.Pt(0, 0))
dst = imaging.Paste(dst, img2, image.Pt(0, 200))
dst = imaging.Paste(dst, img3, image.Pt(200, 0))
dst = imaging.Paste(dst, img4, image.Pt(200, 200))
// Save the resulting image as JPEG.
err = imaging.Save(dst, "testdata/out_example.jpg")
if err != nil {
log.Fatalf("failed to save image: %v", err)
}
}
```
Output:

|