File: rsa_key.go

package info (click to toggle)
golang-github-docker-libtrust 0.0~git20150526.0.9cbd2a1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, buster-proposed-updates, sid
  • size: 288 kB
  • ctags: 297
  • sloc: makefile: 3
file content (427 lines) | stat: -rw-r--r-- 13,049 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
package libtrust

import (
	"crypto"
	"crypto/rand"
	"crypto/rsa"
	"crypto/x509"
	"encoding/json"
	"encoding/pem"
	"errors"
	"fmt"
	"io"
	"math/big"
)

/*
 * RSA DSA PUBLIC KEY
 */

// rsaPublicKey implements a JWK Public Key using RSA digital signature algorithms.
type rsaPublicKey struct {
	*rsa.PublicKey
	extended map[string]interface{}
}

func fromRSAPublicKey(cryptoPublicKey *rsa.PublicKey) *rsaPublicKey {
	return &rsaPublicKey{cryptoPublicKey, map[string]interface{}{}}
}

// KeyType returns the JWK key type for RSA keys, i.e., "RSA".
func (k *rsaPublicKey) KeyType() string {
	return "RSA"
}

// KeyID returns a distinct identifier which is unique to this Public Key.
func (k *rsaPublicKey) KeyID() string {
	return keyIDFromCryptoKey(k)
}

func (k *rsaPublicKey) String() string {
	return fmt.Sprintf("RSA Public Key <%s>", k.KeyID())
}

// Verify verifyies the signature of the data in the io.Reader using this Public Key.
// The alg parameter should be the name of the JWA digital signature algorithm
// which was used to produce the signature and should be supported by this
// public key. Returns a nil error if the signature is valid.
func (k *rsaPublicKey) Verify(data io.Reader, alg string, signature []byte) error {
	// Verify the signature of the given date, return non-nil error if valid.
	sigAlg, err := rsaSignatureAlgorithmByName(alg)
	if err != nil {
		return fmt.Errorf("unable to verify Signature: %s", err)
	}

	hasher := sigAlg.HashID().New()
	_, err = io.Copy(hasher, data)
	if err != nil {
		return fmt.Errorf("error reading data to sign: %s", err)
	}
	hash := hasher.Sum(nil)

	err = rsa.VerifyPKCS1v15(k.PublicKey, sigAlg.HashID(), hash, signature)
	if err != nil {
		return fmt.Errorf("invalid %s signature: %s", sigAlg.HeaderParam(), err)
	}

	return nil
}

// CryptoPublicKey returns the internal object which can be used as a
// crypto.PublicKey for use with other standard library operations. The type
// is either *rsa.PublicKey or *ecdsa.PublicKey
func (k *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
	return k.PublicKey
}

func (k *rsaPublicKey) toMap() map[string]interface{} {
	jwk := make(map[string]interface{})
	for k, v := range k.extended {
		jwk[k] = v
	}
	jwk["kty"] = k.KeyType()
	jwk["kid"] = k.KeyID()
	jwk["n"] = joseBase64UrlEncode(k.N.Bytes())
	jwk["e"] = joseBase64UrlEncode(serializeRSAPublicExponentParam(k.E))

	return jwk
}

// MarshalJSON serializes this Public Key using the JWK JSON serialization format for
// RSA keys.
func (k *rsaPublicKey) MarshalJSON() (data []byte, err error) {
	return json.Marshal(k.toMap())
}

// PEMBlock serializes this Public Key to DER-encoded PKIX format.
func (k *rsaPublicKey) PEMBlock() (*pem.Block, error) {
	derBytes, err := x509.MarshalPKIXPublicKey(k.PublicKey)
	if err != nil {
		return nil, fmt.Errorf("unable to serialize RSA PublicKey to DER-encoded PKIX format: %s", err)
	}
	k.extended["kid"] = k.KeyID() // For display purposes.
	return createPemBlock("PUBLIC KEY", derBytes, k.extended)
}

func (k *rsaPublicKey) AddExtendedField(field string, value interface{}) {
	k.extended[field] = value
}

func (k *rsaPublicKey) GetExtendedField(field string) interface{} {
	v, ok := k.extended[field]
	if !ok {
		return nil
	}
	return v
}

func rsaPublicKeyFromMap(jwk map[string]interface{}) (*rsaPublicKey, error) {
	// JWK key type (kty) has already been determined to be "RSA".
	// Need to extract 'n', 'e', and 'kid' and check for
	// consistency.

	// Get the modulus parameter N.
	nB64Url, err := stringFromMap(jwk, "n")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Public Key modulus: %s", err)
	}

	n, err := parseRSAModulusParam(nB64Url)
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Public Key modulus: %s", err)
	}

	// Get the public exponent E.
	eB64Url, err := stringFromMap(jwk, "e")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Public Key exponent: %s", err)
	}

	e, err := parseRSAPublicExponentParam(eB64Url)
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Public Key exponent: %s", err)
	}

	key := &rsaPublicKey{
		PublicKey: &rsa.PublicKey{N: n, E: e},
	}

	// Key ID is optional, but if it exists, it should match the key.
	_, ok := jwk["kid"]
	if ok {
		kid, err := stringFromMap(jwk, "kid")
		if err != nil {
			return nil, fmt.Errorf("JWK RSA Public Key ID: %s", err)
		}
		if kid != key.KeyID() {
			return nil, fmt.Errorf("JWK RSA Public Key ID does not match: %s", kid)
		}
	}

	if _, ok := jwk["d"]; ok {
		return nil, fmt.Errorf("JWK RSA Public Key cannot contain private exponent")
	}

	key.extended = jwk

	return key, nil
}

/*
 * RSA DSA PRIVATE KEY
 */

// rsaPrivateKey implements a JWK Private Key using RSA digital signature algorithms.
type rsaPrivateKey struct {
	rsaPublicKey
	*rsa.PrivateKey
}

func fromRSAPrivateKey(cryptoPrivateKey *rsa.PrivateKey) *rsaPrivateKey {
	return &rsaPrivateKey{
		*fromRSAPublicKey(&cryptoPrivateKey.PublicKey),
		cryptoPrivateKey,
	}
}

// PublicKey returns the Public Key data associated with this Private Key.
func (k *rsaPrivateKey) PublicKey() PublicKey {
	return &k.rsaPublicKey
}

func (k *rsaPrivateKey) String() string {
	return fmt.Sprintf("RSA Private Key <%s>", k.KeyID())
}

// Sign signs the data read from the io.Reader using a signature algorithm supported
// by the RSA private key. If the specified hashing algorithm is supported by
// this key, that hash function is used to generate the signature otherwise the
// the default hashing algorithm for this key is used. Returns the signature
// and the name of the JWK signature algorithm used, e.g., "RS256", "RS384",
// "RS512".
func (k *rsaPrivateKey) Sign(data io.Reader, hashID crypto.Hash) (signature []byte, alg string, err error) {
	// Generate a signature of the data using the internal alg.
	sigAlg := rsaPKCS1v15SignatureAlgorithmForHashID(hashID)
	hasher := sigAlg.HashID().New()

	_, err = io.Copy(hasher, data)
	if err != nil {
		return nil, "", fmt.Errorf("error reading data to sign: %s", err)
	}
	hash := hasher.Sum(nil)

	signature, err = rsa.SignPKCS1v15(rand.Reader, k.PrivateKey, sigAlg.HashID(), hash)
	if err != nil {
		return nil, "", fmt.Errorf("error producing signature: %s", err)
	}

	alg = sigAlg.HeaderParam()

	return
}

// CryptoPrivateKey returns the internal object which can be used as a
// crypto.PublicKey for use with other standard library operations. The type
// is either *rsa.PublicKey or *ecdsa.PublicKey
func (k *rsaPrivateKey) CryptoPrivateKey() crypto.PrivateKey {
	return k.PrivateKey
}

func (k *rsaPrivateKey) toMap() map[string]interface{} {
	k.Precompute() // Make sure the precomputed values are stored.
	jwk := k.rsaPublicKey.toMap()

	jwk["d"] = joseBase64UrlEncode(k.D.Bytes())
	jwk["p"] = joseBase64UrlEncode(k.Primes[0].Bytes())
	jwk["q"] = joseBase64UrlEncode(k.Primes[1].Bytes())
	jwk["dp"] = joseBase64UrlEncode(k.Precomputed.Dp.Bytes())
	jwk["dq"] = joseBase64UrlEncode(k.Precomputed.Dq.Bytes())
	jwk["qi"] = joseBase64UrlEncode(k.Precomputed.Qinv.Bytes())

	otherPrimes := k.Primes[2:]

	if len(otherPrimes) > 0 {
		otherPrimesInfo := make([]interface{}, len(otherPrimes))
		for i, r := range otherPrimes {
			otherPrimeInfo := make(map[string]string, 3)
			otherPrimeInfo["r"] = joseBase64UrlEncode(r.Bytes())
			crtVal := k.Precomputed.CRTValues[i]
			otherPrimeInfo["d"] = joseBase64UrlEncode(crtVal.Exp.Bytes())
			otherPrimeInfo["t"] = joseBase64UrlEncode(crtVal.Coeff.Bytes())
			otherPrimesInfo[i] = otherPrimeInfo
		}
		jwk["oth"] = otherPrimesInfo
	}

	return jwk
}

// MarshalJSON serializes this Private Key using the JWK JSON serialization format for
// RSA keys.
func (k *rsaPrivateKey) MarshalJSON() (data []byte, err error) {
	return json.Marshal(k.toMap())
}

// PEMBlock serializes this Private Key to DER-encoded PKIX format.
func (k *rsaPrivateKey) PEMBlock() (*pem.Block, error) {
	derBytes := x509.MarshalPKCS1PrivateKey(k.PrivateKey)
	k.extended["keyID"] = k.KeyID() // For display purposes.
	return createPemBlock("RSA PRIVATE KEY", derBytes, k.extended)
}

func rsaPrivateKeyFromMap(jwk map[string]interface{}) (*rsaPrivateKey, error) {
	// The JWA spec for RSA Private Keys (draft rfc section 5.3.2) states that
	// only the private key exponent 'd' is REQUIRED, the others are just for
	// signature/decryption optimizations and SHOULD be included when the JWK
	// is produced. We MAY choose to accept a JWK which only includes 'd', but
	// we're going to go ahead and not choose to accept it without the extra
	// fields. Only the 'oth' field will be optional (for multi-prime keys).
	privateExponent, err := parseRSAPrivateKeyParamFromMap(jwk, "d")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key exponent: %s", err)
	}
	firstPrimeFactor, err := parseRSAPrivateKeyParamFromMap(jwk, "p")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
	}
	secondPrimeFactor, err := parseRSAPrivateKeyParamFromMap(jwk, "q")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
	}
	firstFactorCRT, err := parseRSAPrivateKeyParamFromMap(jwk, "dp")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
	}
	secondFactorCRT, err := parseRSAPrivateKeyParamFromMap(jwk, "dq")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
	}
	crtCoeff, err := parseRSAPrivateKeyParamFromMap(jwk, "qi")
	if err != nil {
		return nil, fmt.Errorf("JWK RSA Private Key CRT coefficient: %s", err)
	}

	var oth interface{}
	if _, ok := jwk["oth"]; ok {
		oth = jwk["oth"]
		delete(jwk, "oth")
	}

	// JWK key type (kty) has already been determined to be "RSA".
	// Need to extract the public key information, then extract the private
	// key values.
	publicKey, err := rsaPublicKeyFromMap(jwk)
	if err != nil {
		return nil, err
	}

	privateKey := &rsa.PrivateKey{
		PublicKey: *publicKey.PublicKey,
		D:         privateExponent,
		Primes:    []*big.Int{firstPrimeFactor, secondPrimeFactor},
		Precomputed: rsa.PrecomputedValues{
			Dp:   firstFactorCRT,
			Dq:   secondFactorCRT,
			Qinv: crtCoeff,
		},
	}

	if oth != nil {
		// Should be an array of more JSON objects.
		otherPrimesInfo, ok := oth.([]interface{})
		if !ok {
			return nil, errors.New("JWK RSA Private Key: Invalid other primes info: must be an array")
		}
		numOtherPrimeFactors := len(otherPrimesInfo)
		if numOtherPrimeFactors == 0 {
			return nil, errors.New("JWK RSA Privake Key: Invalid other primes info: must be absent or non-empty")
		}
		otherPrimeFactors := make([]*big.Int, numOtherPrimeFactors)
		productOfPrimes := new(big.Int).Mul(firstPrimeFactor, secondPrimeFactor)
		crtValues := make([]rsa.CRTValue, numOtherPrimeFactors)

		for i, val := range otherPrimesInfo {
			otherPrimeinfo, ok := val.(map[string]interface{})
			if !ok {
				return nil, errors.New("JWK RSA Private Key: Invalid other prime info: must be a JSON object")
			}

			otherPrimeFactor, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "r")
			if err != nil {
				return nil, fmt.Errorf("JWK RSA Private Key prime factor: %s", err)
			}
			otherFactorCRT, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "d")
			if err != nil {
				return nil, fmt.Errorf("JWK RSA Private Key CRT exponent: %s", err)
			}
			otherCrtCoeff, err := parseRSAPrivateKeyParamFromMap(otherPrimeinfo, "t")
			if err != nil {
				return nil, fmt.Errorf("JWK RSA Private Key CRT coefficient: %s", err)
			}

			crtValue := crtValues[i]
			crtValue.Exp = otherFactorCRT
			crtValue.Coeff = otherCrtCoeff
			crtValue.R = productOfPrimes
			otherPrimeFactors[i] = otherPrimeFactor
			productOfPrimes = new(big.Int).Mul(productOfPrimes, otherPrimeFactor)
		}

		privateKey.Primes = append(privateKey.Primes, otherPrimeFactors...)
		privateKey.Precomputed.CRTValues = crtValues
	}

	key := &rsaPrivateKey{
		rsaPublicKey: *publicKey,
		PrivateKey:   privateKey,
	}

	return key, nil
}

/*
 *	Key Generation Functions.
 */

func generateRSAPrivateKey(bits int) (k *rsaPrivateKey, err error) {
	k = new(rsaPrivateKey)
	k.PrivateKey, err = rsa.GenerateKey(rand.Reader, bits)
	if err != nil {
		return nil, err
	}

	k.rsaPublicKey.PublicKey = &k.PrivateKey.PublicKey
	k.extended = make(map[string]interface{})

	return
}

// GenerateRSA2048PrivateKey generates a key pair using 2048-bit RSA.
func GenerateRSA2048PrivateKey() (PrivateKey, error) {
	k, err := generateRSAPrivateKey(2048)
	if err != nil {
		return nil, fmt.Errorf("error generating RSA 2048-bit key: %s", err)
	}

	return k, nil
}

// GenerateRSA3072PrivateKey generates a key pair using 3072-bit RSA.
func GenerateRSA3072PrivateKey() (PrivateKey, error) {
	k, err := generateRSAPrivateKey(3072)
	if err != nil {
		return nil, fmt.Errorf("error generating RSA 3072-bit key: %s", err)
	}

	return k, nil
}

// GenerateRSA4096PrivateKey generates a key pair using 4096-bit RSA.
func GenerateRSA4096PrivateKey() (PrivateKey, error) {
	k, err := generateRSAPrivateKey(4096)
	if err != nil {
		return nil, fmt.Errorf("error generating RSA 4096-bit key: %s", err)
	}

	return k, nil
}