1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
package goja
// Ported from Rhino (https://github.com/mozilla/rhino/blob/master/src/org/mozilla/javascript/DToA.java)
import (
"bytes"
"fmt"
"math"
"math/big"
"strconv"
)
const (
frac_mask = 0xfffff
exp_shift = 20
exp_msk1 = 0x100000
exp_shiftL = 52
exp_mask_shifted = 0x7ff
frac_maskL = 0xfffffffffffff
exp_msk1L = 0x10000000000000
exp_shift1 = 20
exp_mask = 0x7ff00000
bias = 1023
p = 53
bndry_mask = 0xfffff
log2P = 1
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)
func lo0bits(x uint32) (k uint32) {
if (x & 7) != 0 {
if (x & 1) != 0 {
return 0
}
if (x & 2) != 0 {
return 1
}
return 2
}
if (x & 0xffff) == 0 {
k = 16
x >>= 16
}
if (x & 0xff) == 0 {
k += 8
x >>= 8
}
if (x & 0xf) == 0 {
k += 4
x >>= 4
}
if (x & 0x3) == 0 {
k += 2
x >>= 2
}
if (x & 1) == 0 {
k++
x >>= 1
if (x & 1) == 0 {
return 32
}
}
return
}
func hi0bits(x uint32) (k uint32) {
if (x & 0xffff0000) == 0 {
k = 16
x <<= 16
}
if (x & 0xff000000) == 0 {
k += 8
x <<= 8
}
if (x & 0xf0000000) == 0 {
k += 4
x <<= 4
}
if (x & 0xc0000000) == 0 {
k += 2
x <<= 2
}
if (x & 0x80000000) == 0 {
k++
if (x & 0x40000000) == 0 {
return 32
}
}
return
}
func stuffBits(bits []byte, offset int, val uint32) {
bits[offset] = byte(val >> 24)
bits[offset+1] = byte(val >> 16)
bits[offset+2] = byte(val >> 8)
bits[offset+3] = byte(val)
}
func d2b(d float64) (b *big.Int, e int32, bits uint32) {
dBits := math.Float64bits(d)
d0 := uint32(dBits >> 32)
d1 := uint32(dBits)
z := d0 & frac_mask
d0 &= 0x7fffffff /* clear sign bit, which we ignore */
var de, k, i uint32
var dbl_bits []byte
if de = (d0 >> exp_shift); de != 0 {
z |= exp_msk1
}
y := d1
if y != 0 {
dbl_bits = make([]byte, 8)
k = lo0bits(y)
y >>= k
if k != 0 {
stuffBits(dbl_bits, 4, y|z<<(32-k))
z >>= k
} else {
stuffBits(dbl_bits, 4, y)
}
stuffBits(dbl_bits, 0, z)
if z != 0 {
i = 2
} else {
i = 1
}
} else {
dbl_bits = make([]byte, 4)
k = lo0bits(z)
z >>= k
stuffBits(dbl_bits, 0, z)
k += 32
i = 1
}
if de != 0 {
e = int32(de - bias - (p - 1) + k)
bits = p - k
} else {
e = int32(de - bias - (p - 1) + 1 + k)
bits = 32*i - hi0bits(z)
}
b = (&big.Int{}).SetBytes(dbl_bits)
return
}
func dtobasestr(num float64, radix int) string {
var negative bool
if num < 0 {
num = -num
negative = true
}
dfloor := math.Floor(num)
ldfloor := int64(dfloor)
var intDigits string
if dfloor == float64(ldfloor) {
if negative {
ldfloor = -ldfloor
}
intDigits = strconv.FormatInt(ldfloor, radix)
} else {
floorBits := math.Float64bits(num)
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
var mantissa int64
if exp == 0 {
mantissa = int64((floorBits & frac_maskL) << 1)
} else {
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
}
if negative {
mantissa = -mantissa
}
exp -= 1075
x := big.NewInt(mantissa)
if exp > 0 {
x.Lsh(x, uint(exp))
} else if exp < 0 {
x.Rsh(x, uint(-exp))
}
intDigits = x.Text(radix)
}
if num == dfloor {
// No fraction part
return intDigits
} else {
/* We have a fraction. */
var buffer bytes.Buffer
buffer.WriteString(intDigits)
buffer.WriteByte('.')
df := num - dfloor
dBits := math.Float64bits(num)
word0 := uint32(dBits >> 32)
word1 := uint32(dBits)
b, e, _ := d2b(df)
// JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 := -int32((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
if s2 == 0 {
s2 = -1
}
s2 += bias + p
/* 1/2^s2 = (nextDouble(d) - d)/2 */
// JS_ASSERT(-s2 < e);
if -s2 >= e {
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
}
mlo := big.NewInt(1)
mhi := mlo
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & exp_mask << 1)) != 0) {
/* The special case. Here we want to be within a quarter of the last input
significant digit instead of one half of it when the output string's value is less than d. */
s2 += log2P
mhi = big.NewInt(1 << log2P)
}
b.Lsh(b, uint(e+s2))
s := big.NewInt(1)
s.Lsh(s, uint(s2))
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
bigBase := big.NewInt(int64(radix))
done := false
m := &big.Int{}
delta := &big.Int{}
for !done {
b.Mul(b, bigBase)
b.DivMod(b, s, m)
digit := byte(b.Int64())
b, m = m, b
mlo.Mul(mlo, bigBase)
if mlo != mhi {
mhi.Mul(mhi, bigBase)
}
/* Do we yet have the shortest string that will round to d? */
j := b.Cmp(mlo)
/* j is b/2^s2 compared with mlo/2^s2. */
delta.Sub(s, mhi)
var j1 int
if delta.Sign() <= 0 {
j1 = 1
} else {
j1 = b.Cmp(delta)
}
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
if j1 == 0 && (word1&1) == 0 {
if j > 0 {
digit++
}
done = true
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
if j1 > 0 {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b.Lsh(b, 1)
j1 = b.Cmp(s)
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
digit++
}
}
done = true
} else if j1 > 0 {
digit++
done = true
}
// JS_ASSERT(digit < (uint32)base);
buffer.WriteByte(digits[digit])
}
return buffer.String()
}
}
|