File: ftobasestr.go

package info (click to toggle)
golang-github-dop251-goja 0.0~git20250630.0.58d95d8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,264 kB
  • sloc: javascript: 454; perl: 184; makefile: 6; sh: 1
file content (153 lines) | stat: -rw-r--r-- 3,554 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
package ftoa

import (
	"fmt"
	"math"
	"math/big"
	"strconv"
	"strings"
)

const (
	digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)

func FToBaseStr(num float64, radix int) string {
	var negative bool
	if num < 0 {
		num = -num
		negative = true
	}

	dfloor := math.Floor(num)
	ldfloor := int64(dfloor)
	var intDigits string
	if dfloor == float64(ldfloor) {
		if negative {
			ldfloor = -ldfloor
		}
		intDigits = strconv.FormatInt(ldfloor, radix)
	} else {
		floorBits := math.Float64bits(num)
		exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
		var mantissa int64
		if exp == 0 {
			mantissa = int64((floorBits & frac_maskL) << 1)
		} else {
			mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
		}

		if negative {
			mantissa = -mantissa
		}
		exp -= 1075
		x := big.NewInt(mantissa)
		if exp > 0 {
			x.Lsh(x, uint(exp))
		} else if exp < 0 {
			x.Rsh(x, uint(-exp))
		}
		intDigits = x.Text(radix)
	}

	if num == dfloor {
		// No fraction part
		return intDigits
	} else {
		/* We have a fraction. */
		var buffer strings.Builder
		buffer.WriteString(intDigits)
		buffer.WriteByte('.')
		df := num - dfloor

		dBits := math.Float64bits(num)
		word0 := uint32(dBits >> 32)
		word1 := uint32(dBits)

		dblBits := make([]byte, 0, 8)
		e, _, dblBits := d2b(df, dblBits)
		//            JS_ASSERT(e < 0);
		/* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */

		s2 := -int((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
		if s2 == 0 {
			s2 = -1
		}
		s2 += bias + p
		/* 1/2^s2 = (nextDouble(d) - d)/2 */
		//            JS_ASSERT(-s2 < e);
		if -s2 >= e {
			panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
		}
		mlo := big.NewInt(1)
		mhi := mlo
		if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
			/* The special case.  Here we want to be within a quarter of the last input
			   significant digit instead of one half of it when the output string's value is less than d.  */
			s2 += log2P
			mhi = big.NewInt(1 << log2P)
		}

		b := new(big.Int).SetBytes(dblBits)
		b.Lsh(b, uint(e+s2))
		s := big.NewInt(1)
		s.Lsh(s, uint(s2))
		/* At this point we have the following:
		 *   s = 2^s2;
		 *   1 > df = b/2^s2 > 0;
		 *   (d - prevDouble(d))/2 = mlo/2^s2;
		 *   (nextDouble(d) - d)/2 = mhi/2^s2. */
		bigBase := big.NewInt(int64(radix))

		done := false
		m := &big.Int{}
		delta := &big.Int{}
		for !done {
			b.Mul(b, bigBase)
			b.DivMod(b, s, m)
			digit := byte(b.Int64())
			b, m = m, b
			mlo.Mul(mlo, bigBase)
			if mlo != mhi {
				mhi.Mul(mhi, bigBase)
			}

			/* Do we yet have the shortest string that will round to d? */
			j := b.Cmp(mlo)
			/* j is b/2^s2 compared with mlo/2^s2. */

			delta.Sub(s, mhi)
			var j1 int
			if delta.Sign() <= 0 {
				j1 = 1
			} else {
				j1 = b.Cmp(delta)
			}
			/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
			if j1 == 0 && (word1&1) == 0 {
				if j > 0 {
					digit++
				}
				done = true
			} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
				if j1 > 0 {
					/* Either dig or dig+1 would work here as the least significant digit.
					Use whichever would produce an output value closer to d. */
					b.Lsh(b, 1)
					j1 = b.Cmp(s)
					if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3.  */
						digit++
					}
				}
				done = true
			} else if j1 > 0 {
				digit++
				done = true
			}
			//                JS_ASSERT(digit < (uint32)base);
			buffer.WriteByte(digits[digit])
		}

		return buffer.String()
	}
}