1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
package ftoa
import (
"fmt"
"math"
"math/big"
"strconv"
"strings"
)
const (
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)
func FToBaseStr(num float64, radix int) string {
var negative bool
if num < 0 {
num = -num
negative = true
}
dfloor := math.Floor(num)
ldfloor := int64(dfloor)
var intDigits string
if dfloor == float64(ldfloor) {
if negative {
ldfloor = -ldfloor
}
intDigits = strconv.FormatInt(ldfloor, radix)
} else {
floorBits := math.Float64bits(num)
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
var mantissa int64
if exp == 0 {
mantissa = int64((floorBits & frac_maskL) << 1)
} else {
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
}
if negative {
mantissa = -mantissa
}
exp -= 1075
x := big.NewInt(mantissa)
if exp > 0 {
x.Lsh(x, uint(exp))
} else if exp < 0 {
x.Rsh(x, uint(-exp))
}
intDigits = x.Text(radix)
}
if num == dfloor {
// No fraction part
return intDigits
} else {
/* We have a fraction. */
var buffer strings.Builder
buffer.WriteString(intDigits)
buffer.WriteByte('.')
df := num - dfloor
dBits := math.Float64bits(num)
word0 := uint32(dBits >> 32)
word1 := uint32(dBits)
dblBits := make([]byte, 0, 8)
e, _, dblBits := d2b(df, dblBits)
// JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 := -int((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
if s2 == 0 {
s2 = -1
}
s2 += bias + p
/* 1/2^s2 = (nextDouble(d) - d)/2 */
// JS_ASSERT(-s2 < e);
if -s2 >= e {
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
}
mlo := big.NewInt(1)
mhi := mlo
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
/* The special case. Here we want to be within a quarter of the last input
significant digit instead of one half of it when the output string's value is less than d. */
s2 += log2P
mhi = big.NewInt(1 << log2P)
}
b := new(big.Int).SetBytes(dblBits)
b.Lsh(b, uint(e+s2))
s := big.NewInt(1)
s.Lsh(s, uint(s2))
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
bigBase := big.NewInt(int64(radix))
done := false
m := &big.Int{}
delta := &big.Int{}
for !done {
b.Mul(b, bigBase)
b.DivMod(b, s, m)
digit := byte(b.Int64())
b, m = m, b
mlo.Mul(mlo, bigBase)
if mlo != mhi {
mhi.Mul(mhi, bigBase)
}
/* Do we yet have the shortest string that will round to d? */
j := b.Cmp(mlo)
/* j is b/2^s2 compared with mlo/2^s2. */
delta.Sub(s, mhi)
var j1 int
if delta.Sign() <= 0 {
j1 = 1
} else {
j1 = b.Cmp(delta)
}
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
if j1 == 0 && (word1&1) == 0 {
if j > 0 {
digit++
}
done = true
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
if j1 > 0 {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b.Lsh(b, 1)
j1 = b.Cmp(s)
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
digit++
}
}
done = true
} else if j1 > 0 {
digit++
done = true
}
// JS_ASSERT(digit < (uint32)base);
buffer.WriteByte(digits[digit])
}
return buffer.String()
}
}
|