File: writer.go

package info (click to toggle)
golang-github-dsnet-compress 0.0.2~git20230904.39efe44%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,724 kB
  • sloc: sh: 108; makefile: 5
file content (307 lines) | stat: -rw-r--r-- 7,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.

package bzip2

import (
	"io"

	"github.com/dsnet/compress/internal"
	"github.com/dsnet/compress/internal/errors"
	"github.com/dsnet/compress/internal/prefix"
)

type Writer struct {
	InputOffset  int64 // Total number of bytes issued to Write
	OutputOffset int64 // Total number of bytes written to underlying io.Writer

	wr     prefixWriter
	err    error
	level  int    // The current compression level
	wrHdr  bool   // Have we written the stream header?
	blkCRC uint32 // CRC-32 IEEE of each block
	endCRC uint32 // Checksum of all blocks using bzip2's custom method

	crc crc
	rle runLengthEncoding
	bwt burrowsWheelerTransform
	mtf moveToFront

	// These fields are allocated with Writer and re-used later.
	buf         []byte
	treeSels    []uint8
	treeSelsMTF []uint8
	codes2D     [maxNumTrees][maxNumSyms]prefix.PrefixCode
	codes1D     [maxNumTrees]prefix.PrefixCodes
	trees1D     [maxNumTrees]prefix.Encoder
}

type WriterConfig struct {
	Level int

	_ struct{} // Blank field to prevent unkeyed struct literals
}

func NewWriter(w io.Writer, conf *WriterConfig) (*Writer, error) {
	var lvl int
	if conf != nil {
		lvl = conf.Level
	}
	if lvl == 0 {
		lvl = DefaultCompression
	}
	if lvl < BestSpeed || lvl > BestCompression {
		return nil, errorf(errors.Invalid, "compression level: %d", lvl)
	}
	zw := new(Writer)
	zw.level = lvl
	zw.Reset(w)
	return zw, nil
}

func (zw *Writer) Reset(w io.Writer) error {
	*zw = Writer{
		wr:    zw.wr,
		level: zw.level,

		rle: zw.rle,
		bwt: zw.bwt,
		mtf: zw.mtf,

		buf:         zw.buf,
		treeSels:    zw.treeSels,
		treeSelsMTF: zw.treeSelsMTF,
		trees1D:     zw.trees1D,
	}
	zw.wr.Init(w)
	if len(zw.buf) != zw.level*blockSize {
		zw.buf = make([]byte, zw.level*blockSize)
	}
	zw.rle.Init(zw.buf)
	return nil
}

func (zw *Writer) Write(buf []byte) (int, error) {
	if zw.err != nil {
		return 0, zw.err
	}

	cnt := len(buf)
	for {
		wrCnt, err := zw.rle.Write(buf)
		if err != rleDone && zw.err == nil {
			zw.err = err
		}
		zw.crc.update(buf[:wrCnt])
		buf = buf[wrCnt:]
		if len(buf) == 0 {
			zw.InputOffset += int64(cnt)
			return cnt, nil
		}
		if zw.err = zw.flush(); zw.err != nil {
			return 0, zw.err
		}
	}
}

func (zw *Writer) flush() error {
	vals := zw.rle.Bytes()
	if len(vals) == 0 {
		return nil
	}
	zw.wr.Offset = zw.OutputOffset
	func() {
		defer errors.Recover(&zw.err)
		if !zw.wrHdr {
			// Write stream header.
			zw.wr.WriteBitsBE64(hdrMagic, 16)
			zw.wr.WriteBitsBE64('h', 8)
			zw.wr.WriteBitsBE64(uint64('0'+zw.level), 8)
			zw.wrHdr = true
		}
		zw.encodeBlock(vals)
	}()
	var err error
	if zw.OutputOffset, err = zw.wr.Flush(); zw.err == nil {
		zw.err = err
	}
	if zw.err != nil {
		zw.err = errWrap(zw.err, errors.Internal)
		return zw.err
	}
	zw.endCRC = (zw.endCRC<<1 | zw.endCRC>>31) ^ zw.blkCRC
	zw.blkCRC = 0
	zw.rle.Init(zw.buf)
	return nil
}

func (zw *Writer) Close() error {
	if zw.err == errClosed {
		return nil
	}

	// Flush RLE buffer if there is left-over data.
	if zw.err = zw.flush(); zw.err != nil {
		return zw.err
	}

	// Write stream footer.
	zw.wr.Offset = zw.OutputOffset
	func() {
		defer errors.Recover(&zw.err)
		if !zw.wrHdr {
			// Write stream header.
			zw.wr.WriteBitsBE64(hdrMagic, 16)
			zw.wr.WriteBitsBE64('h', 8)
			zw.wr.WriteBitsBE64(uint64('0'+zw.level), 8)
			zw.wrHdr = true
		}
		zw.wr.WriteBitsBE64(endMagic, 48)
		zw.wr.WriteBitsBE64(uint64(zw.endCRC), 32)
		zw.wr.WritePads(0)
	}()
	var err error
	if zw.OutputOffset, err = zw.wr.Flush(); zw.err == nil {
		zw.err = err
	}
	if zw.err != nil {
		zw.err = errWrap(zw.err, errors.Internal)
		return zw.err
	}

	zw.err = errClosed
	return nil
}

func (zw *Writer) encodeBlock(buf []byte) {
	zw.blkCRC = zw.crc.val
	zw.wr.WriteBitsBE64(blkMagic, 48)
	zw.wr.WriteBitsBE64(uint64(zw.blkCRC), 32)
	zw.wr.WriteBitsBE64(0, 1)
	zw.crc.val = 0

	// Step 1: Burrows-Wheeler transformation.
	ptr := zw.bwt.Encode(buf)
	zw.wr.WriteBitsBE64(uint64(ptr), 24)

	// Step 2: Move-to-front transform and run-length encoding.
	var dictMap [256]bool
	for _, c := range buf {
		dictMap[c] = true
	}

	var dictArr [256]uint8
	var bmapLo [16]uint16
	dict := dictArr[:0]
	bmapHi := uint16(0)
	for i, b := range dictMap {
		if b {
			c := uint8(i)
			dict = append(dict, c)
			bmapHi |= 1 << (c >> 4)
			bmapLo[c>>4] |= 1 << (c & 0xf)
		}
	}

	zw.wr.WriteBits(uint(bmapHi), 16)
	for _, m := range bmapLo {
		if m > 0 {
			zw.wr.WriteBits(uint(m), 16)
		}
	}

	zw.mtf.Init(dict, len(buf))
	syms := zw.mtf.Encode(buf)

	// Step 3: Prefix encoding.
	zw.encodePrefix(syms, len(dict))
}

func (zw *Writer) encodePrefix(syms []uint16, numSyms int) {
	numSyms += 2 // Remove 0 symbol, add RUNA, RUNB, and EOB symbols
	if numSyms < 3 {
		panicf(errors.Internal, "unable to encode EOB marker")
	}
	syms = append(syms, uint16(numSyms-1)) // EOB marker

	// Compute number of prefix trees needed.
	numTrees := maxNumTrees
	for i, lim := range []int{200, 600, 1200, 2400} {
		if len(syms) < lim {
			numTrees = minNumTrees + i
			break
		}
	}

	// Compute number of block selectors.
	numSels := (len(syms) + numBlockSyms - 1) / numBlockSyms
	if cap(zw.treeSels) < numSels {
		zw.treeSels = make([]uint8, numSels)
	}
	treeSels := zw.treeSels[:numSels]
	for i := range treeSels {
		treeSels[i] = uint8(i % numTrees)
	}

	// Initialize prefix codes.
	for i := range zw.codes2D[:numTrees] {
		pc := zw.codes2D[i][:numSyms]
		for j := range pc {
			pc[j] = prefix.PrefixCode{Sym: uint32(j)}
		}
		zw.codes1D[i] = pc
	}

	// First cut at assigning prefix trees to each group.
	var codes prefix.PrefixCodes
	var blkLen, selIdx int
	for _, sym := range syms {
		if blkLen == 0 {
			blkLen = numBlockSyms
			codes = zw.codes2D[treeSels[selIdx]][:numSyms]
			selIdx++
		}
		blkLen--
		codes[sym].Cnt++
	}

	// TODO(dsnet): Use K-means to cluster groups to each prefix tree.

	// Generate lengths and prefixes based on symbol frequencies.
	for i := range zw.trees1D[:numTrees] {
		pc := prefix.PrefixCodes(zw.codes2D[i][:numSyms])
		pc.SortByCount()
		if err := prefix.GenerateLengths(pc, maxPrefixBits); err != nil {
			errors.Panic(err)
		}
		pc.SortBySymbol()
	}

	// Write out information about the trees and tree selectors.
	var mtf internal.MoveToFront
	zw.wr.WriteBitsBE64(uint64(numTrees), 3)
	zw.wr.WriteBitsBE64(uint64(numSels), 15)
	zw.treeSelsMTF = append(zw.treeSelsMTF[:0], treeSels...)
	mtf.Encode(zw.treeSelsMTF)
	for _, sym := range zw.treeSelsMTF {
		zw.wr.WriteSymbol(uint(sym), &encSel)
	}
	zw.wr.WritePrefixCodes(zw.codes1D[:numTrees], zw.trees1D[:numTrees])

	// Write out prefix encoded symbols of compressed data.
	var tree *prefix.Encoder
	blkLen, selIdx = 0, 0
	for _, sym := range syms {
		if blkLen == 0 {
			blkLen = numBlockSyms
			tree = &zw.trees1D[treeSels[selIdx]]
			selIdx++
		}
		blkLen--
		ok := zw.wr.TryWriteSymbol(uint(sym), tree)
		if !ok {
			zw.wr.WriteSymbol(uint(sym), tree)
		}
	}
}