1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package hashmerge provides functionality for merging hashes.
package hashmerge
// The origin of the CombineAdler32, CombineCRC32, and CombineCRC64 functions
// in this package is the adler32_combine, crc32_combine, gf2_matrix_times,
// and gf2_matrix_square functions found in the zlib library and was translated
// from C to Go. Thanks goes to the authors of zlib:
// Mark Adler and Jean-loup Gailly.
//
// See the following:
// http://www.zlib.net/
// https://github.com/madler/zlib/blob/master/adler32.c
// https://github.com/madler/zlib/blob/master/crc32.c
// https://stackoverflow.com/questions/23122312/crc-calculation-of-a-mostly-static-data-stream/23126768#23126768
//
// ====================================================
// Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
// Jean-loup Gailly Mark Adler
// jloup@gzip.org madler@alumni.caltech.edu
// ====================================================
// CombineAdler32 combines two Adler-32 checksums together.
// Let AB be the string concatenation of two strings A and B. Then Combine
// computes the checksum of AB given only the checksum of A, the checksum of B,
// and the length of B:
// adler32.Checksum(AB) == CombineAdler32(adler32.Checksum(A), adler32.Checksum(B), len(B))
func CombineAdler32(adler1, adler2 uint32, len2 int64) uint32 {
if len2 < 0 {
panic("hashmerge: negative length")
}
const mod = 65521
var sum1, sum2, rem uint32
rem = uint32(len2 % mod)
sum1 = adler1 & 0xffff
sum2 = rem * sum1
sum2 %= mod
sum1 += (adler2 & 0xffff) + mod - 1
sum2 += (adler1 >> 16) + (adler2 >> 16) + mod - rem
if sum1 >= mod {
sum1 -= mod
}
if sum1 >= mod {
sum1 -= mod
}
if sum2 >= mod<<1 {
sum2 -= mod << 1
}
if sum2 >= mod {
sum2 -= mod
}
return sum1 | (sum2 << 16)
}
// CombineCRC32 combines two CRC-32 checksums together.
// Let AB be the string concatenation of two strings A and B. Then Combine
// computes the checksum of AB given only the checksum of A, the checksum of B,
// and the length of B:
// tab := crc32.MakeTable(poly)
// crc32.Checksum(AB, tab) == CombineCRC32(poly, crc32.Checksum(A, tab), crc32.Checksum(B, tab), len(B))
func CombineCRC32(poly, crc1, crc2 uint32, len2 int64) uint32 {
if len2 < 0 {
panic("hashmerge: negative length")
}
// Translation of gf2_matrix_times from zlib.
var matrixMult = func(mat *[32]uint32, vec uint32) uint32 {
var sum uint32
for n := 0; n < 32 && vec > 0; n++ {
if vec&1 > 0 {
sum ^= mat[n]
}
vec >>= 1
}
return sum
}
// Translation of gf2_matrix_square from zlib.
var matrixSquare = func(square, mat *[32]uint32) {
for n := 0; n < 32; n++ {
square[n] = matrixMult(mat, mat[n])
}
}
// Even and odd power-of-two zeros operators.
var even, odd [32]uint32
// Put operator for one zero bit in odd.
var row uint32 = 1
odd[0] = poly
for n := 1; n < 32; n++ {
odd[n] = row
row <<= 1
}
// Put operator for two zero bits in even.
matrixSquare(&even, &odd)
// Put operator for four zero bits in odd.
matrixSquare(&odd, &even)
// Apply len2 zeros to crc1 (first square will put the operator for one
// zero byte, eight zero bits, in even).
for {
// Apply zeros operator for this bit of len2.
matrixSquare(&even, &odd)
if len2&1 > 0 {
crc1 = matrixMult(&even, crc1)
}
len2 >>= 1
if len2 == 0 {
break
}
// Another iteration of the loop with odd and even swapped.
matrixSquare(&odd, &even)
if len2&1 > 0 {
crc1 = matrixMult(&odd, crc1)
}
len2 >>= 1
if len2 == 0 {
break
}
}
return crc1 ^ crc2
}
// CombineCRC64 combines two CRC-64 checksums together.
// Let AB be the string concatenation of two strings A and B. Then Combine
// computes the checksum of AB given only the checksum of A, the checksum of B,
// and the length of B:
// tab := crc64.MakeTable(poly)
// crc64.Checksum(AB, tab) == CombineCRC64(poly, crc64.Checksum(A, tab), crc64.Checksum(B, tab), len(B))
func CombineCRC64(poly, crc1, crc2 uint64, len2 int64) uint64 {
if len2 < 0 {
panic("hashmerge: negative length")
}
// Translation of gf2_matrix_times from zlib.
var matrixMult = func(mat *[64]uint64, vec uint64) uint64 {
var sum uint64
for n := 0; n < 64 && vec > 0; n++ {
if vec&1 > 0 {
sum ^= mat[n]
}
vec >>= 1
}
return sum
}
// Translation of gf2_matrix_square from zlib.
var matrixSquare = func(square, mat *[64]uint64) {
for n := 0; n < 64; n++ {
square[n] = matrixMult(mat, mat[n])
}
}
// Even and odd power-of-two zeros operators.
var even, odd [64]uint64
// Put operator for one zero bit in odd.
var row uint64 = 1
odd[0] = poly
for n := 1; n < 64; n++ {
odd[n] = row
row <<= 1
}
// Put operator for two zero bits in even.
matrixSquare(&even, &odd)
// Put operator for four zero bits in odd.
matrixSquare(&odd, &even)
// Apply len2 zeros to crc1 (first square will put the operator for one
// zero byte, eight zero bits, in even).
for {
// Apply zeros operator for this bit of len2.
matrixSquare(&even, &odd)
if len2&1 > 0 {
crc1 = matrixMult(&even, crc1)
}
len2 >>= 1
if len2 == 0 {
break
}
// Another iteration of the loop with odd and even swapped.
matrixSquare(&odd, &even)
if len2&1 > 0 {
crc1 = matrixMult(&odd, crc1)
}
len2 >>= 1
if len2 == 0 {
break
}
}
return crc1 ^ crc2
}
|