1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
package css_ast
import (
"strconv"
"strings"
"github.com/evanw/esbuild/internal/ast"
"github.com/evanw/esbuild/internal/css_lexer"
"github.com/evanw/esbuild/internal/helpers"
"github.com/evanw/esbuild/internal/logger"
)
// CSS syntax comes in two layers: a minimal syntax that generally accepts
// anything that looks vaguely like CSS, and a large set of built-in rules
// (the things browsers actually interpret). That way CSS parsers can read
// unknown rules and skip over them without having to stop due to errors.
//
// This AST format is mostly just the minimal syntax. It parses unknown rules
// into a tree with enough information that it can write them back out again.
// There are some additional layers of syntax including selectors and @-rules
// which allow for better pretty-printing and minification.
//
// Most of the AST just references ranges of the original file by keeping the
// original "Token" values around from the lexer. This is a memory-efficient
// representation that helps provide good parsing and printing performance.
type AST struct {
Symbols []ast.Symbol
CharFreq *ast.CharFreq
ImportRecords []ast.ImportRecord
Rules []Rule
SourceMapComment logger.Span
ApproximateLineCount int32
LocalSymbols []ast.LocRef
LocalScope map[string]ast.LocRef
GlobalScope map[string]ast.LocRef
Composes map[ast.Ref]*Composes
// These contain all layer names in the file. It can be used to replace the
// layer-related side effects of importing this file. They are split into two
// groups (those before and after "@import" rules) so that the linker can put
// them in the right places.
LayersPreImport [][]string
LayersPostImport [][]string
}
type Composes struct {
// Note that each of these can be either local or global. Local examples:
//
// .foo { composes: bar }
// .bar { color: red }
//
// Global examples:
//
// .foo { composes: bar from global }
// .foo :global { composes: bar }
// .foo { :global { composes: bar } }
// :global .bar { color: red }
//
Names []ast.LocRef
// Each of these is local in another file. For example:
//
// .foo { composes: bar from "bar.css" }
// .foo { composes: bar from url(bar.css) }
//
ImportedNames []ImportedComposesName
// This tracks what CSS properties each class uses so that we can warn when
// "composes" is used incorrectly to compose two classes from separate files
// that declare the same CSS properties.
Properties map[string]logger.Loc
}
type ImportedComposesName struct {
Alias string
AliasLoc logger.Loc
ImportRecordIndex uint32
}
// We create a lot of tokens, so make sure this layout is memory-efficient.
// The layout here isn't optimal because it biases for convenience (e.g.
// "string" could be shorter) but at least the ordering of fields was
// deliberately chosen to minimize size.
type Token struct {
// Contains the child tokens for component values that are simple blocks.
// These are either "(", "{", "[", or function tokens. The closing token is
// implicit and is not stored.
Children *[]Token // 8 bytes
// This is the raw contents of the token most of the time. However, it
// contains the decoded string contents for "TString" tokens.
Text string // 16 bytes
// The source location at the start of the token
Loc logger.Loc // 4 bytes
// URL tokens have an associated import record at the top-level of the AST.
// This index points to that import record.
//
// Symbol tokens have an associated symbol. This index is the "InnerIndex"
// of the "Ref" for this symbol. The "SourceIndex" for the "Ref" is just
// the source index of the file for this AST.
PayloadIndex uint32 // 4 bytes
// The division between the number and the unit for "TDimension" tokens.
UnitOffset uint16 // 2 bytes
// This will never be "TWhitespace" because whitespace isn't stored as a
// token directly. Instead it is stored in "HasWhitespaceAfter" on the
// previous token. This is to make it easier to pattern-match against
// tokens when handling CSS rules, since whitespace almost always doesn't
// matter. That way you can pattern match against e.g. "rgb(r, g, b)" and
// not have to handle all possible combinations of embedded whitespace
// tokens.
//
// There is one exception to this: when in verbatim whitespace mode and
// the token list is non-empty and is only whitespace tokens. In that case
// a single whitespace token is emitted. This is because otherwise there
// would be no tokens to attach the whitespace before/after flags to.
Kind css_lexer.T // 1 byte
// These flags indicate the presence of a "TWhitespace" token before or after
// this token. There should be whitespace printed between two tokens if either
// token indicates that there should be whitespace. Note that whitespace may
// be altered by processing in certain situations (e.g. minification).
Whitespace WhitespaceFlags // 1 byte
}
type WhitespaceFlags uint8
const (
WhitespaceBefore WhitespaceFlags = 1 << iota
WhitespaceAfter
)
// This is necessary when comparing tokens between two different files
type CrossFileEqualityCheck struct {
ImportRecordsA []ast.ImportRecord
ImportRecordsB []ast.ImportRecord
Symbols ast.SymbolMap
SourceIndexA uint32
SourceIndexB uint32
}
func (check *CrossFileEqualityCheck) RefsAreEquivalent(a ast.Ref, b ast.Ref) bool {
if a == b {
return true
}
if check == nil || check.Symbols.SymbolsForSource == nil {
return false
}
a = ast.FollowSymbols(check.Symbols, a)
b = ast.FollowSymbols(check.Symbols, b)
if a == b {
return true
}
symbolA := check.Symbols.Get(a)
symbolB := check.Symbols.Get(b)
return symbolA.Kind == ast.SymbolGlobalCSS && symbolB.Kind == ast.SymbolGlobalCSS && symbolA.OriginalName == symbolB.OriginalName
}
func (a Token) Equal(b Token, check *CrossFileEqualityCheck) bool {
if a.Kind == b.Kind && a.Text == b.Text && a.Whitespace == b.Whitespace {
// URLs should be compared based on the text of the associated import record
// (which is what will actually be printed) instead of the original text
if a.Kind == css_lexer.TURL {
if check == nil {
// If both tokens are in the same file, just compare the index
if a.PayloadIndex != b.PayloadIndex {
return false
}
} else {
// If the tokens come from separate files, compare the import records
// themselves instead of comparing the indices. This can happen when
// the linker runs a "DuplicateRuleRemover" during bundling. This
// doesn't compare the source indices because at this point during
// linking, paths inside the bundle (e.g. due to the "copy" loader)
// should have already been converted into text (e.g. the "unique key"
// string).
if check.ImportRecordsA[a.PayloadIndex].Path.Text !=
check.ImportRecordsB[b.PayloadIndex].Path.Text {
return false
}
}
}
// Symbols should be compared based on the symbol reference instead of the
// original text
if a.Kind == css_lexer.TSymbol {
if check == nil {
// If both tokens are in the same file, just compare the index
if a.PayloadIndex != b.PayloadIndex {
return false
}
} else {
// If the tokens come from separate files, compare the symbols themselves
refA := ast.Ref{SourceIndex: check.SourceIndexA, InnerIndex: a.PayloadIndex}
refB := ast.Ref{SourceIndex: check.SourceIndexB, InnerIndex: b.PayloadIndex}
if !check.RefsAreEquivalent(refA, refB) {
return false
}
}
}
if a.Children == nil && b.Children == nil {
return true
}
if a.Children != nil && b.Children != nil && TokensEqual(*a.Children, *b.Children, check) {
return true
}
}
return false
}
func TokensEqual(a []Token, b []Token, check *CrossFileEqualityCheck) bool {
if len(a) != len(b) {
return false
}
for i, ai := range a {
if !ai.Equal(b[i], check) {
return false
}
}
return true
}
func HashTokens(hash uint32, tokens []Token) uint32 {
hash = helpers.HashCombine(hash, uint32(len(tokens)))
for _, t := range tokens {
hash = helpers.HashCombine(hash, uint32(t.Kind))
if t.Kind != css_lexer.TURL {
hash = helpers.HashCombineString(hash, t.Text)
}
if t.Children != nil {
hash = HashTokens(hash, *t.Children)
}
}
return hash
}
func (a Token) EqualIgnoringWhitespace(b Token) bool {
if a.Kind == b.Kind && a.Text == b.Text && a.PayloadIndex == b.PayloadIndex {
if a.Children == nil && b.Children == nil {
return true
}
if a.Children != nil && b.Children != nil && TokensEqualIgnoringWhitespace(*a.Children, *b.Children) {
return true
}
}
return false
}
func TokensEqualIgnoringWhitespace(a []Token, b []Token) bool {
if len(a) != len(b) {
return false
}
for i, c := range a {
if !c.EqualIgnoringWhitespace(b[i]) {
return false
}
}
return true
}
func TokensAreCommaSeparated(tokens []Token) bool {
if n := len(tokens); (n & 1) != 0 {
for i := 1; i < n; i += 2 {
if tokens[i].Kind != css_lexer.TComma {
return false
}
}
return true
}
return false
}
type PercentageFlags uint8
const (
AllowPercentageBelow0 PercentageFlags = 1 << iota
AllowPercentageAbove100
AllowAnyPercentage = AllowPercentageBelow0 | AllowPercentageAbove100
)
func (t Token) NumberOrFractionForPercentage(percentReferenceRange float64, flags PercentageFlags) (float64, bool) {
switch t.Kind {
case css_lexer.TNumber:
if f, err := strconv.ParseFloat(t.Text, 64); err == nil {
return f, true
}
case css_lexer.TPercentage:
if f, err := strconv.ParseFloat(t.PercentageValue(), 64); err == nil {
if (flags&AllowPercentageBelow0) == 0 && f < 0 {
return 0, true
}
if (flags&AllowPercentageAbove100) == 0 && f > 100 {
return percentReferenceRange, true
}
return f / 100 * percentReferenceRange, true
}
}
return 0, false
}
func (t Token) ClampedFractionForPercentage() (float64, bool) {
if t.Kind == css_lexer.TPercentage {
if f, err := strconv.ParseFloat(t.PercentageValue(), 64); err == nil {
if f < 0 {
return 0, true
}
if f > 100 {
return 1, true
}
return f / 100, true
}
}
return 0, false
}
// https://drafts.csswg.org/css-values-3/#lengths
// For zero lengths the unit identifier is optional
// (i.e. can be syntactically represented as the <number> 0).
func (t *Token) TurnLengthIntoNumberIfZero() bool {
if t.Kind == css_lexer.TDimension && t.DimensionValue() == "0" {
t.Kind = css_lexer.TNumber
t.Text = "0"
return true
}
return false
}
func (t *Token) TurnLengthOrPercentageIntoNumberIfZero() bool {
if t.Kind == css_lexer.TPercentage && t.PercentageValue() == "0" {
t.Kind = css_lexer.TNumber
t.Text = "0"
return true
}
return t.TurnLengthIntoNumberIfZero()
}
func (t Token) PercentageValue() string {
return t.Text[:len(t.Text)-1]
}
func (t Token) DimensionValue() string {
return t.Text[:t.UnitOffset]
}
func (t Token) DimensionUnit() string {
return t.Text[t.UnitOffset:]
}
func (t Token) DimensionUnitIsSafeLength() bool {
switch strings.ToLower(t.DimensionUnit()) {
// These units can be reasonably expected to be supported everywhere.
// Information used: https://developer.mozilla.org/en-US/docs/Web/CSS/length
case "cm", "em", "in", "mm", "pc", "pt", "px":
return true
}
return false
}
func (t Token) IsZero() bool {
return t.Kind == css_lexer.TNumber && t.Text == "0"
}
func (t Token) IsOne() bool {
return t.Kind == css_lexer.TNumber && t.Text == "1"
}
func (t Token) IsAngle() bool {
if t.Kind == css_lexer.TDimension {
unit := strings.ToLower(t.DimensionUnit())
return unit == "deg" || unit == "grad" || unit == "rad" || unit == "turn"
}
return false
}
func CloneTokensWithoutImportRecords(tokensIn []Token) (tokensOut []Token) {
for _, t := range tokensIn {
if t.Children != nil {
children := CloneTokensWithoutImportRecords(*t.Children)
t.Children = &children
}
tokensOut = append(tokensOut, t)
}
return
}
func CloneTokensWithImportRecords(
tokensIn []Token, importRecordsIn []ast.ImportRecord,
tokensOut []Token, importRecordsOut []ast.ImportRecord,
) ([]Token, []ast.ImportRecord) {
// Preallocate the output array if we can
if tokensOut == nil {
tokensOut = make([]Token, 0, len(tokensIn))
}
for _, t := range tokensIn {
// Clear the source mapping if this token is being used in another file
t.Loc.Start = 0
// If this is a URL token, also clone the import record
if t.Kind == css_lexer.TURL {
importRecordIndex := uint32(len(importRecordsOut))
importRecordsOut = append(importRecordsOut, importRecordsIn[t.PayloadIndex])
t.PayloadIndex = importRecordIndex
}
// Also search for URL tokens in this token's children
if t.Children != nil {
var children []Token
children, importRecordsOut = CloneTokensWithImportRecords(*t.Children, importRecordsIn, children, importRecordsOut)
t.Children = &children
}
tokensOut = append(tokensOut, t)
}
return tokensOut, importRecordsOut
}
type Rule struct {
Data R
Loc logger.Loc
}
type R interface {
Equal(rule R, check *CrossFileEqualityCheck) bool
Hash() (uint32, bool)
}
func RulesEqual(a []Rule, b []Rule, check *CrossFileEqualityCheck) bool {
if len(a) != len(b) {
return false
}
for i, ai := range a {
if !ai.Data.Equal(b[i].Data, check) {
return false
}
}
return true
}
func HashRules(hash uint32, rules []Rule) uint32 {
hash = helpers.HashCombine(hash, uint32(len(rules)))
for _, child := range rules {
if childHash, ok := child.Data.Hash(); ok {
hash = helpers.HashCombine(hash, childHash)
} else {
hash = helpers.HashCombine(hash, 0)
}
}
return hash
}
type RAtCharset struct {
Encoding string
}
func (a *RAtCharset) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RAtCharset)
return ok && a.Encoding == b.Encoding
}
func (r *RAtCharset) Hash() (uint32, bool) {
hash := uint32(1)
hash = helpers.HashCombineString(hash, r.Encoding)
return hash, true
}
type ImportConditions struct {
// The syntax for "@import" has been extended with optional conditions that
// behave as if the imported file was wrapped in a "@layer", "@supports",
// and/or "@media" rule. The possible syntax combinations are as follows:
//
// @import url(...);
// @import url(...) layer;
// @import url(...) layer(layer-name);
// @import url(...) layer(layer-name) supports(supports-condition);
// @import url(...) layer(layer-name) supports(supports-condition) list-of-media-queries;
// @import url(...) layer(layer-name) list-of-media-queries;
// @import url(...) supports(supports-condition);
// @import url(...) supports(supports-condition) list-of-media-queries;
// @import url(...) list-of-media-queries;
//
// From: https://developer.mozilla.org/en-US/docs/Web/CSS/@import#syntax
Media []Token
// These two fields will only ever have zero or one tokens. However, they are
// implemented as arrays for convenience because most of esbuild's helper
// functions that operate on tokens take arrays instead of individual tokens.
Layers []Token
Supports []Token
}
func (c *ImportConditions) CloneWithImportRecords(importRecordsIn []ast.ImportRecord, importRecordsOut []ast.ImportRecord) (ImportConditions, []ast.ImportRecord) {
result := ImportConditions{}
result.Layers, importRecordsOut = CloneTokensWithImportRecords(c.Layers, importRecordsIn, nil, importRecordsOut)
result.Supports, importRecordsOut = CloneTokensWithImportRecords(c.Supports, importRecordsIn, nil, importRecordsOut)
result.Media, importRecordsOut = CloneTokensWithImportRecords(c.Media, importRecordsIn, nil, importRecordsOut)
return result, importRecordsOut
}
type RAtImport struct {
ImportConditions *ImportConditions
ImportRecordIndex uint32
}
func (*RAtImport) Equal(rule R, check *CrossFileEqualityCheck) bool {
return false
}
func (r *RAtImport) Hash() (uint32, bool) {
return 0, false
}
type RAtKeyframes struct {
AtToken string
Name ast.LocRef
Blocks []KeyframeBlock
CloseBraceLoc logger.Loc
}
type KeyframeBlock struct {
Selectors []string
Rules []Rule
Loc logger.Loc
CloseBraceLoc logger.Loc
}
func (a *RAtKeyframes) Equal(rule R, check *CrossFileEqualityCheck) bool {
if b, ok := rule.(*RAtKeyframes); ok && strings.EqualFold(a.AtToken, b.AtToken) && check.RefsAreEquivalent(a.Name.Ref, b.Name.Ref) && len(a.Blocks) == len(b.Blocks) {
for i, ai := range a.Blocks {
bi := b.Blocks[i]
if len(ai.Selectors) != len(bi.Selectors) {
return false
}
for j, aj := range ai.Selectors {
if aj != bi.Selectors[j] {
return false
}
}
if !RulesEqual(ai.Rules, bi.Rules, check) {
return false
}
}
return true
}
return false
}
func (r *RAtKeyframes) Hash() (uint32, bool) {
hash := uint32(2)
hash = helpers.HashCombineString(hash, r.AtToken)
hash = helpers.HashCombine(hash, uint32(len(r.Blocks)))
for _, block := range r.Blocks {
hash = helpers.HashCombine(hash, uint32(len(block.Selectors)))
for _, sel := range block.Selectors {
hash = helpers.HashCombineString(hash, sel)
}
hash = HashRules(hash, block.Rules)
}
return hash, true
}
type RKnownAt struct {
AtToken string
Prelude []Token
Rules []Rule
CloseBraceLoc logger.Loc
}
func (a *RKnownAt) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RKnownAt)
return ok && strings.EqualFold(a.AtToken, b.AtToken) && TokensEqual(a.Prelude, b.Prelude, check) && RulesEqual(a.Rules, b.Rules, check)
}
func (r *RKnownAt) Hash() (uint32, bool) {
hash := uint32(3)
hash = helpers.HashCombineString(hash, r.AtToken)
hash = HashTokens(hash, r.Prelude)
hash = HashRules(hash, r.Rules)
return hash, true
}
type RUnknownAt struct {
AtToken string
Prelude []Token
Block []Token
}
func (a *RUnknownAt) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RUnknownAt)
return ok && strings.EqualFold(a.AtToken, b.AtToken) && TokensEqual(a.Prelude, b.Prelude, check) && TokensEqual(a.Block, b.Block, check)
}
func (r *RUnknownAt) Hash() (uint32, bool) {
hash := uint32(4)
hash = helpers.HashCombineString(hash, r.AtToken)
hash = HashTokens(hash, r.Prelude)
hash = HashTokens(hash, r.Block)
return hash, true
}
type RSelector struct {
Selectors []ComplexSelector
Rules []Rule
CloseBraceLoc logger.Loc
}
func (a *RSelector) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RSelector)
return ok && ComplexSelectorsEqual(a.Selectors, b.Selectors, check) && RulesEqual(a.Rules, b.Rules, check)
}
func (r *RSelector) Hash() (uint32, bool) {
hash := uint32(5)
hash = helpers.HashCombine(hash, uint32(len(r.Selectors)))
hash = HashComplexSelectors(hash, r.Selectors)
hash = HashRules(hash, r.Rules)
return hash, true
}
type RQualified struct {
Prelude []Token
Rules []Rule
CloseBraceLoc logger.Loc
}
func (a *RQualified) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RQualified)
return ok && TokensEqual(a.Prelude, b.Prelude, check) && RulesEqual(a.Rules, b.Rules, check)
}
func (r *RQualified) Hash() (uint32, bool) {
hash := uint32(6)
hash = HashTokens(hash, r.Prelude)
hash = HashRules(hash, r.Rules)
return hash, true
}
type RDeclaration struct {
KeyText string
Value []Token
KeyRange logger.Range
Key D // Compare using this instead of "Key" for speed
Important bool
}
func (a *RDeclaration) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RDeclaration)
return ok && a.KeyText == b.KeyText && TokensEqual(a.Value, b.Value, check) && a.Important == b.Important
}
func (r *RDeclaration) Hash() (uint32, bool) {
var hash uint32
if r.Key == DUnknown {
if r.Important {
hash = uint32(7)
} else {
hash = uint32(8)
}
hash = helpers.HashCombineString(hash, r.KeyText)
} else {
if r.Important {
hash = uint32(9)
} else {
hash = uint32(10)
}
hash = helpers.HashCombine(hash, uint32(r.Key))
}
hash = HashTokens(hash, r.Value)
return hash, true
}
type RBadDeclaration struct {
Tokens []Token
}
func (a *RBadDeclaration) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RBadDeclaration)
return ok && TokensEqual(a.Tokens, b.Tokens, check)
}
func (r *RBadDeclaration) Hash() (uint32, bool) {
hash := uint32(11)
hash = HashTokens(hash, r.Tokens)
return hash, true
}
type RComment struct {
Text string
}
func (a *RComment) Equal(rule R, check *CrossFileEqualityCheck) bool {
b, ok := rule.(*RComment)
return ok && a.Text == b.Text
}
func (r *RComment) Hash() (uint32, bool) {
hash := uint32(12)
hash = helpers.HashCombineString(hash, r.Text)
return hash, true
}
type RAtLayer struct {
Names [][]string
Rules []Rule
CloseBraceLoc logger.Loc
}
func (a *RAtLayer) Equal(rule R, check *CrossFileEqualityCheck) bool {
if b, ok := rule.(*RAtLayer); ok && len(a.Names) == len(b.Names) && len(a.Rules) == len(b.Rules) {
for i, ai := range a.Names {
bi := b.Names[i]
if len(ai) != len(bi) {
return false
}
for j, aj := range ai {
if aj != bi[j] {
return false
}
}
}
if !RulesEqual(a.Rules, b.Rules, check) {
return false
}
}
return false
}
func (r *RAtLayer) Hash() (uint32, bool) {
hash := uint32(13)
hash = helpers.HashCombine(hash, uint32(len(r.Names)))
for _, parts := range r.Names {
hash = helpers.HashCombine(hash, uint32(len(parts)))
for _, part := range parts {
hash = helpers.HashCombineString(hash, part)
}
}
hash = HashRules(hash, r.Rules)
return hash, true
}
type ComplexSelector struct {
Selectors []CompoundSelector
}
func ComplexSelectorsEqual(a []ComplexSelector, b []ComplexSelector, check *CrossFileEqualityCheck) bool {
if len(a) != len(b) {
return false
}
for i, ai := range a {
if !ai.Equal(b[i], check) {
return false
}
}
return true
}
func HashComplexSelectors(hash uint32, selectors []ComplexSelector) uint32 {
for _, complex := range selectors {
hash = helpers.HashCombine(hash, uint32(len(complex.Selectors)))
for _, sel := range complex.Selectors {
if sel.TypeSelector != nil {
hash = helpers.HashCombineString(hash, sel.TypeSelector.Name.Text)
} else {
hash = helpers.HashCombine(hash, 0)
}
hash = helpers.HashCombine(hash, uint32(len(sel.SubclassSelectors)))
for _, ss := range sel.SubclassSelectors {
hash = helpers.HashCombine(hash, ss.Data.Hash())
}
hash = helpers.HashCombine(hash, uint32(sel.Combinator.Byte))
}
}
return hash
}
func (s ComplexSelector) Clone() ComplexSelector {
clone := ComplexSelector{Selectors: make([]CompoundSelector, len(s.Selectors))}
for i, sel := range s.Selectors {
clone.Selectors[i] = sel.Clone()
}
return clone
}
func (sel ComplexSelector) ContainsNestingCombinator() bool {
for _, inner := range sel.Selectors {
if len(inner.NestingSelectorLocs) > 0 {
return true
}
for _, ss := range inner.SubclassSelectors {
if pseudo, ok := ss.Data.(*SSPseudoClassWithSelectorList); ok {
for _, nested := range pseudo.Selectors {
if nested.ContainsNestingCombinator() {
return true
}
}
}
}
}
return false
}
func (sel ComplexSelector) IsRelative() bool {
// https://www.w3.org/TR/css-nesting-1/#syntax
// "If a selector in the <relative-selector-list> does not start with a
// combinator but does contain the nesting selector, it is interpreted
// as a non-relative selector."
if sel.Selectors[0].Combinator.Byte == 0 && sel.ContainsNestingCombinator() {
return false
}
return true
}
func tokensContainAmpersandRecursive(tokens []Token) bool {
for _, t := range tokens {
if t.Kind == css_lexer.TDelimAmpersand {
return true
}
if children := t.Children; children != nil && tokensContainAmpersandRecursive(*children) {
return true
}
}
return false
}
func (sel ComplexSelector) UsesPseudoElement() bool {
for _, sel := range sel.Selectors {
for _, ss := range sel.SubclassSelectors {
if class, ok := ss.Data.(*SSPseudoClass); ok {
if class.IsElement {
return true
}
// https://www.w3.org/TR/selectors-4/#single-colon-pseudos
// The four Level 2 pseudo-elements (::before, ::after, ::first-line,
// and ::first-letter) may, for legacy reasons, be represented using
// the <pseudo-class-selector> grammar, with only a single ":"
// character at their start.
switch class.Name {
case "before", "after", "first-line", "first-letter":
return true
}
}
}
}
return false
}
func (a ComplexSelector) Equal(b ComplexSelector, check *CrossFileEqualityCheck) bool {
if len(a.Selectors) != len(b.Selectors) {
return false
}
for i, ai := range a.Selectors {
bi := b.Selectors[i]
if len(ai.NestingSelectorLocs) != len(bi.NestingSelectorLocs) || ai.Combinator.Byte != bi.Combinator.Byte {
return false
}
if ats, bts := ai.TypeSelector, bi.TypeSelector; (ats == nil) != (bts == nil) {
return false
} else if ats != nil && bts != nil && !ats.Equal(*bts) {
return false
}
if len(ai.SubclassSelectors) != len(bi.SubclassSelectors) {
return false
}
for j, aj := range ai.SubclassSelectors {
if !aj.Data.Equal(bi.SubclassSelectors[j].Data, check) {
return false
}
}
}
return true
}
type Combinator struct {
Loc logger.Loc
Byte uint8 // Optional, may be 0 for no combinator
}
type CompoundSelector struct {
TypeSelector *NamespacedName
SubclassSelectors []SubclassSelector
NestingSelectorLocs []logger.Loc // "&" vs. "&&" is different specificity
Combinator Combinator // Optional, may be 0
// If this is true, this is a "&" that was generated by a bare ":local" or ":global"
WasEmptyFromLocalOrGlobal bool
}
func (sel CompoundSelector) IsSingleAmpersand() bool {
return len(sel.NestingSelectorLocs) == 1 && sel.Combinator.Byte == 0 && sel.TypeSelector == nil && len(sel.SubclassSelectors) == 0
}
func (sel CompoundSelector) IsInvalidBecauseEmpty() bool {
return len(sel.NestingSelectorLocs) == 0 && sel.TypeSelector == nil && len(sel.SubclassSelectors) == 0
}
func (sel CompoundSelector) Range() (r logger.Range) {
if sel.Combinator.Byte != 0 {
r = logger.Range{Loc: sel.Combinator.Loc, Len: 1}
}
if sel.TypeSelector != nil {
r.ExpandBy(sel.TypeSelector.Range())
}
for _, loc := range sel.NestingSelectorLocs {
r.ExpandBy(logger.Range{Loc: loc, Len: 1})
}
if len(sel.SubclassSelectors) > 0 {
for _, ss := range sel.SubclassSelectors {
r.ExpandBy(ss.Range)
}
}
return
}
func (sel CompoundSelector) Clone() CompoundSelector {
clone := sel
if sel.TypeSelector != nil {
t := sel.TypeSelector.Clone()
clone.TypeSelector = &t
}
if sel.SubclassSelectors != nil {
selectors := make([]SubclassSelector, len(sel.SubclassSelectors))
for i, ss := range sel.SubclassSelectors {
ss.Data = ss.Data.Clone()
selectors[i] = ss
}
clone.SubclassSelectors = selectors
}
return clone
}
type NameToken struct {
Text string
Range logger.Range
Kind css_lexer.T
}
func (a NameToken) Equal(b NameToken) bool {
return a.Text == b.Text && a.Kind == b.Kind
}
type NamespacedName struct {
// If present, this is an identifier or "*" and is followed by a "|" character
NamespacePrefix *NameToken
// This is an identifier or "*"
Name NameToken
}
func (n NamespacedName) Range() logger.Range {
if n.NamespacePrefix != nil {
loc := n.NamespacePrefix.Range.Loc
return logger.Range{Loc: loc, Len: n.Name.Range.End() - loc.Start}
}
return n.Name.Range
}
func (n NamespacedName) Clone() NamespacedName {
clone := n
if n.NamespacePrefix != nil {
prefix := *n.NamespacePrefix
clone.NamespacePrefix = &prefix
}
return clone
}
func (a NamespacedName) Equal(b NamespacedName) bool {
return a.Name.Equal(b.Name) && (a.NamespacePrefix == nil) == (b.NamespacePrefix == nil) &&
(a.NamespacePrefix == nil || b.NamespacePrefix == nil || a.NamespacePrefix.Equal(b.Name))
}
type SubclassSelector struct {
Data SS
Range logger.Range
}
type SS interface {
Equal(ss SS, check *CrossFileEqualityCheck) bool
Hash() uint32
Clone() SS
}
type SSHash struct {
Name ast.LocRef
}
func (a *SSHash) Equal(ss SS, check *CrossFileEqualityCheck) bool {
b, ok := ss.(*SSHash)
return ok && check.RefsAreEquivalent(a.Name.Ref, b.Name.Ref)
}
func (ss *SSHash) Hash() uint32 {
hash := uint32(1)
return hash
}
func (ss *SSHash) Clone() SS {
clone := *ss
return &clone
}
type SSClass struct {
Name ast.LocRef
}
func (a *SSClass) Equal(ss SS, check *CrossFileEqualityCheck) bool {
b, ok := ss.(*SSClass)
return ok && check.RefsAreEquivalent(a.Name.Ref, b.Name.Ref)
}
func (ss *SSClass) Hash() uint32 {
hash := uint32(2)
return hash
}
func (ss *SSClass) Clone() SS {
clone := *ss
return &clone
}
type SSAttribute struct {
MatcherOp string // Either "" or one of: "=" "~=" "|=" "^=" "$=" "*="
MatcherValue string
NamespacedName NamespacedName
MatcherModifier byte // Either 0 or one of: 'i' 'I' 's' 'S'
}
func (a *SSAttribute) Equal(ss SS, check *CrossFileEqualityCheck) bool {
b, ok := ss.(*SSAttribute)
return ok && a.NamespacedName.Equal(b.NamespacedName) && a.MatcherOp == b.MatcherOp &&
a.MatcherValue == b.MatcherValue && a.MatcherModifier == b.MatcherModifier
}
func (ss *SSAttribute) Hash() uint32 {
hash := uint32(3)
hash = helpers.HashCombineString(hash, ss.NamespacedName.Name.Text)
hash = helpers.HashCombineString(hash, ss.MatcherOp)
hash = helpers.HashCombineString(hash, ss.MatcherValue)
return hash
}
func (ss *SSAttribute) Clone() SS {
clone := *ss
clone.NamespacedName = ss.NamespacedName.Clone()
return &clone
}
type SSPseudoClass struct {
Name string
Args []Token
IsElement bool // If true, this is prefixed by "::" instead of ":"
}
func (a *SSPseudoClass) Equal(ss SS, check *CrossFileEqualityCheck) bool {
b, ok := ss.(*SSPseudoClass)
return ok && a.Name == b.Name && TokensEqual(a.Args, b.Args, check) && a.IsElement == b.IsElement
}
func (ss *SSPseudoClass) Hash() uint32 {
hash := uint32(4)
hash = helpers.HashCombineString(hash, ss.Name)
hash = HashTokens(hash, ss.Args)
return hash
}
func (ss *SSPseudoClass) Clone() SS {
clone := *ss
if ss.Args != nil {
ss.Args = CloneTokensWithoutImportRecords(ss.Args)
}
return &clone
}
type PseudoClassKind uint8
const (
PseudoClassGlobal PseudoClassKind = iota
PseudoClassHas
PseudoClassIs
PseudoClassLocal
PseudoClassNot
PseudoClassNthChild
PseudoClassNthLastChild
PseudoClassNthLastOfType
PseudoClassNthOfType
PseudoClassWhere
)
func (kind PseudoClassKind) HasNthIndex() bool {
return kind >= PseudoClassNthChild && kind <= PseudoClassNthOfType
}
func (kind PseudoClassKind) String() string {
switch kind {
case PseudoClassGlobal:
return "global"
case PseudoClassHas:
return "has"
case PseudoClassIs:
return "is"
case PseudoClassLocal:
return "local"
case PseudoClassNot:
return "not"
case PseudoClassNthChild:
return "nth-child"
case PseudoClassNthLastChild:
return "nth-last-child"
case PseudoClassNthLastOfType:
return "nth-last-of-type"
case PseudoClassNthOfType:
return "nth-of-type"
case PseudoClassWhere:
return "where"
default:
panic("Internal error")
}
}
// This is the "An+B" syntax
type NthIndex struct {
A string
B string // May be "even" or "odd"
}
func (index *NthIndex) Minify() {
// "even" => "2n"
if index.B == "even" {
index.A = "2"
index.B = ""
return
}
// "2n+1" => "odd"
if index.A == "2" && index.B == "1" {
index.A = ""
index.B = "odd"
return
}
// "0n+1" => "1"
if index.A == "0" {
index.A = ""
if index.B == "" {
// "0n" => "0"
index.B = "0"
}
return
}
// "1n+0" => "1n"
if index.B == "0" && index.A != "" {
index.B = ""
}
}
// See https://drafts.csswg.org/selectors/#grouping
type SSPseudoClassWithSelectorList struct {
Selectors []ComplexSelector
Index NthIndex
Kind PseudoClassKind
}
func (a *SSPseudoClassWithSelectorList) Equal(ss SS, check *CrossFileEqualityCheck) bool {
b, ok := ss.(*SSPseudoClassWithSelectorList)
return ok && a.Kind == b.Kind && a.Index == b.Index && ComplexSelectorsEqual(a.Selectors, b.Selectors, check)
}
func (ss *SSPseudoClassWithSelectorList) Hash() uint32 {
hash := uint32(5)
hash = helpers.HashCombine(hash, uint32(ss.Kind))
hash = helpers.HashCombineString(hash, ss.Index.A)
hash = helpers.HashCombineString(hash, ss.Index.B)
hash = HashComplexSelectors(hash, ss.Selectors)
return hash
}
func (ss *SSPseudoClassWithSelectorList) Clone() SS {
clone := *ss
clone.Selectors = make([]ComplexSelector, len(ss.Selectors))
for i, sel := range ss.Selectors {
clone.Selectors[i] = sel.Clone()
}
return &clone
}
|