1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
package css_parser
import (
"fmt"
"math"
"strconv"
"strings"
"github.com/evanw/esbuild/internal/css_ast"
"github.com/evanw/esbuild/internal/css_lexer"
"github.com/evanw/esbuild/internal/logger"
)
func (p *parser) tryToReduceCalcExpression(token css_ast.Token) css_ast.Token {
if term := tryToParseCalcTerm(*token.Children); term != nil {
whitespace := css_ast.WhitespaceBefore | css_ast.WhitespaceAfter
if p.options.minifyWhitespace {
whitespace = 0
}
term = term.partiallySimplify()
if result, ok := term.convertToToken(whitespace); ok {
if result.Kind == css_lexer.TOpenParen {
result.Kind = css_lexer.TFunction
result.Text = "calc"
}
result.Loc = token.Loc
result.Whitespace = css_ast.WhitespaceBefore | css_ast.WhitespaceAfter
return result
}
}
return token
}
type calcTermWithOp struct {
data calcTerm
opLoc logger.Loc
}
// See: https://www.w3.org/TR/css-values-4/#calc-internal
type calcTerm interface {
convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool)
partiallySimplify() calcTerm
}
type calcSum struct {
terms []calcTermWithOp
}
type calcProduct struct {
terms []calcTermWithOp
}
type calcNegate struct {
term calcTermWithOp
}
type calcInvert struct {
term calcTermWithOp
}
type calcNumeric struct {
unit string
number float64
loc logger.Loc
}
type calcValue struct {
token css_ast.Token
isInvalidPlusOrMinus bool
}
func floatToStringForCalc(a float64) (string, bool) {
// Handle non-finite cases
if math.IsNaN(a) || math.IsInf(a, 0) {
return "", false
}
// Print the number as a string
text := fmt.Sprintf("%.05f", a)
for text[len(text)-1] == '0' {
text = text[:len(text)-1]
}
if text[len(text)-1] == '.' {
text = text[:len(text)-1]
}
if strings.HasPrefix(text, "0.") {
text = text[1:]
} else if strings.HasPrefix(text, "-0.") {
text = "-" + text[2:]
}
// Bail if the number is not exactly represented
if number, err := strconv.ParseFloat(text, 64); err != nil || number != a {
return "", false
}
return text, true
}
func (c *calcSum) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
// Specification: https://www.w3.org/TR/css-values-4/#calc-serialize
tokens := make([]css_ast.Token, 0, len(c.terms)*2)
// ALGORITHM DEVIATION: Avoid parenthesizing product nodes inside sum nodes
if product, ok := c.terms[0].data.(*calcProduct); ok {
token, ok := product.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, *token.Children...)
} else {
token, ok := c.terms[0].data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, token)
}
for _, term := range c.terms[1:] {
// If child is a Negate node, append " - " to s, then serialize the Negate’s child and append the result to s.
if negate, ok := term.data.(*calcNegate); ok {
token, ok := negate.term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, css_ast.Token{
Loc: term.opLoc,
Kind: css_lexer.TDelimMinus,
Text: "-",
Whitespace: css_ast.WhitespaceBefore | css_ast.WhitespaceAfter,
}, token)
continue
}
// If child is a negative numeric value, append " - " to s, then serialize the negation of child as normal and append the result to s.
if numeric, ok := term.data.(*calcNumeric); ok && numeric.number < 0 {
clone := *numeric
clone.number = -clone.number
token, ok := clone.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, css_ast.Token{
Loc: term.opLoc,
Kind: css_lexer.TDelimMinus,
Text: "-",
Whitespace: css_ast.WhitespaceBefore | css_ast.WhitespaceAfter,
}, token)
continue
}
// Otherwise, append " + " to s, then serialize child and append the result to s.
tokens = append(tokens, css_ast.Token{
Loc: term.opLoc,
Kind: css_lexer.TDelimPlus,
Text: "+",
Whitespace: css_ast.WhitespaceBefore | css_ast.WhitespaceAfter,
})
// ALGORITHM DEVIATION: Avoid parenthesizing product nodes inside sum nodes
if product, ok := term.data.(*calcProduct); ok {
token, ok := product.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, *token.Children...)
} else {
token, ok := term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, token)
}
}
return css_ast.Token{
Loc: tokens[0].Loc,
Kind: css_lexer.TOpenParen,
Text: "(",
Children: &tokens,
}, true
}
func (c *calcProduct) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
// Specification: https://www.w3.org/TR/css-values-4/#calc-serialize
tokens := make([]css_ast.Token, 0, len(c.terms)*2)
token, ok := c.terms[0].data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, token)
for _, term := range c.terms[1:] {
// If child is an Invert node, append " / " to s, then serialize the Invert’s child and append the result to s.
if invert, ok := term.data.(*calcInvert); ok {
token, ok := invert.term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, css_ast.Token{
Loc: term.opLoc,
Kind: css_lexer.TDelimSlash,
Text: "/",
Whitespace: whitespace,
}, token)
continue
}
// Otherwise, append " * " to s, then serialize child and append the result to s.
token, ok := term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
tokens = append(tokens, css_ast.Token{
Loc: term.opLoc,
Kind: css_lexer.TDelimAsterisk,
Text: "*",
Whitespace: whitespace,
}, token)
}
return css_ast.Token{
Loc: tokens[0].Loc,
Kind: css_lexer.TOpenParen,
Text: "(",
Children: &tokens,
}, true
}
func (c *calcNegate) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
// Specification: https://www.w3.org/TR/css-values-4/#calc-serialize
token, ok := c.term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
return css_ast.Token{
Kind: css_lexer.TOpenParen,
Text: "(",
Children: &[]css_ast.Token{
{Loc: c.term.opLoc, Kind: css_lexer.TNumber, Text: "-1"},
{Loc: c.term.opLoc, Kind: css_lexer.TDelimSlash, Text: "*", Whitespace: css_ast.WhitespaceBefore | css_ast.WhitespaceAfter},
token,
},
}, true
}
func (c *calcInvert) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
// Specification: https://www.w3.org/TR/css-values-4/#calc-serialize
token, ok := c.term.data.convertToToken(whitespace)
if !ok {
return css_ast.Token{}, false
}
return css_ast.Token{
Kind: css_lexer.TOpenParen,
Text: "(",
Children: &[]css_ast.Token{
{Loc: c.term.opLoc, Kind: css_lexer.TNumber, Text: "1"},
{Loc: c.term.opLoc, Kind: css_lexer.TDelimSlash, Text: "/", Whitespace: css_ast.WhitespaceBefore | css_ast.WhitespaceAfter},
token,
},
}, true
}
func (c *calcNumeric) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
text, ok := floatToStringForCalc(c.number)
if !ok {
return css_ast.Token{}, false
}
if c.unit == "" {
return css_ast.Token{
Loc: c.loc,
Kind: css_lexer.TNumber,
Text: text,
}, true
}
if c.unit == "%" {
return css_ast.Token{
Loc: c.loc,
Kind: css_lexer.TPercentage,
Text: text + "%",
}, true
}
return css_ast.Token{
Loc: c.loc,
Kind: css_lexer.TDimension,
Text: text + c.unit,
UnitOffset: uint16(len(text)),
}, true
}
func (c *calcValue) convertToToken(whitespace css_ast.WhitespaceFlags) (css_ast.Token, bool) {
t := c.token
t.Whitespace = 0
return t, true
}
func (c *calcSum) partiallySimplify() calcTerm {
// Specification: https://www.w3.org/TR/css-values-4/#calc-simplification
// For each of root’s children that are Sum nodes, replace them with their children.
terms := make([]calcTermWithOp, 0, len(c.terms))
for _, term := range c.terms {
term.data = term.data.partiallySimplify()
if sum, ok := term.data.(*calcSum); ok {
terms = append(terms, sum.terms...)
} else {
terms = append(terms, term)
}
}
// For each set of root’s children that are numeric values with identical units, remove
// those children and replace them with a single numeric value containing the sum of the
// removed nodes, and with the same unit. (E.g. combine numbers, combine percentages,
// combine px values, etc.)
for i := 0; i < len(terms); i++ {
term := terms[i]
if numeric, ok := term.data.(*calcNumeric); ok {
end := i + 1
for j := end; j < len(terms); j++ {
term2 := terms[j]
if numeric2, ok := term2.data.(*calcNumeric); ok && strings.EqualFold(numeric2.unit, numeric.unit) {
numeric.number += numeric2.number
} else {
terms[end] = term2
end++
}
}
terms = terms[:end]
}
}
// If root has only a single child at this point, return the child.
if len(terms) == 1 {
return terms[0].data
}
// Otherwise, return root.
c.terms = terms
return c
}
func (c *calcProduct) partiallySimplify() calcTerm {
// Specification: https://www.w3.org/TR/css-values-4/#calc-simplification
// For each of root’s children that are Product nodes, replace them with their children.
terms := make([]calcTermWithOp, 0, len(c.terms))
for _, term := range c.terms {
term.data = term.data.partiallySimplify()
if product, ok := term.data.(*calcProduct); ok {
terms = append(terms, product.terms...)
} else {
terms = append(terms, term)
}
}
// If root has multiple children that are numbers (not percentages or dimensions), remove
// them and replace them with a single number containing the product of the removed nodes.
for i, term := range terms {
if numeric, ok := term.data.(*calcNumeric); ok && numeric.unit == "" {
end := i + 1
for j := end; j < len(terms); j++ {
term2 := terms[j]
if numeric2, ok := term2.data.(*calcNumeric); ok && numeric2.unit == "" {
numeric.number *= numeric2.number
} else {
terms[end] = term2
end++
}
}
terms = terms[:end]
break
}
}
// If root contains only numeric values and/or Invert nodes containing numeric values,
// and multiplying the types of all the children (noting that the type of an Invert
// node is the inverse of its child’s type) results in a type that matches any of the
// types that a math function can resolve to, return the result of multiplying all the
// values of the children (noting that the value of an Invert node is the reciprocal
// of its child’s value), expressed in the result’s canonical unit.
if len(terms) == 2 {
// Right now, only handle the case of two numbers, one of which has no unit
if first, ok := terms[0].data.(*calcNumeric); ok {
if second, ok := terms[1].data.(*calcNumeric); ok {
if first.unit == "" {
second.number *= first.number
return second
}
if second.unit == "" {
first.number *= second.number
return first
}
}
}
}
// ALGORITHM DEVIATION: Divide instead of multiply if the reciprocal is shorter
for i := 1; i < len(terms); i++ {
if numeric, ok := terms[i].data.(*calcNumeric); ok {
reciprocal := 1 / numeric.number
if multiply, ok := floatToStringForCalc(numeric.number); ok {
if divide, ok := floatToStringForCalc(reciprocal); ok && len(divide) < len(multiply) {
numeric.number = reciprocal
terms[i].data = &calcInvert{term: calcTermWithOp{
data: numeric,
opLoc: terms[i].opLoc,
}}
}
}
}
}
// If root has only a single child at this point, return the child.
if len(terms) == 1 {
return terms[0].data
}
// Otherwise, return root.
c.terms = terms
return c
}
func (c *calcNegate) partiallySimplify() calcTerm {
// Specification: https://www.w3.org/TR/css-values-4/#calc-simplification
c.term.data = c.term.data.partiallySimplify()
// If root’s child is a numeric value, return an equivalent numeric value, but with the value negated (0 - value).
if numeric, ok := c.term.data.(*calcNumeric); ok {
numeric.number = -numeric.number
return numeric
}
// If root’s child is a Negate node, return the child’s child.
if negate, ok := c.term.data.(*calcNegate); ok {
return negate.term.data
}
return c
}
func (c *calcInvert) partiallySimplify() calcTerm {
// Specification: https://www.w3.org/TR/css-values-4/#calc-simplification
c.term.data = c.term.data.partiallySimplify()
// If root’s child is a number (not a percentage or dimension) return the reciprocal of the child’s value.
if numeric, ok := c.term.data.(*calcNumeric); ok && numeric.unit == "" {
numeric.number = 1 / numeric.number
return numeric
}
// If root’s child is an Invert node, return the child’s child.
if invert, ok := c.term.data.(*calcInvert); ok {
return invert.term.data
}
return c
}
func (c *calcNumeric) partiallySimplify() calcTerm {
return c
}
func (c *calcValue) partiallySimplify() calcTerm {
return c
}
func tryToParseCalcTerm(tokens []css_ast.Token) calcTerm {
// Specification: https://www.w3.org/TR/css-values-4/#calc-internal
terms := make([]calcTermWithOp, len(tokens))
for i, token := range tokens {
var term calcTerm
if token.Kind == css_lexer.TFunction && strings.EqualFold(token.Text, "var") {
// Using "var()" should bail because it can expand to any number of tokens
return nil
} else if token.Kind == css_lexer.TOpenParen || (token.Kind == css_lexer.TFunction && strings.EqualFold(token.Text, "calc")) {
term = tryToParseCalcTerm(*token.Children)
if term == nil {
return nil
}
} else if token.Kind == css_lexer.TNumber {
if number, err := strconv.ParseFloat(token.Text, 64); err == nil {
term = &calcNumeric{loc: token.Loc, number: number}
} else {
term = &calcValue{token: token}
}
} else if token.Kind == css_lexer.TPercentage {
if number, err := strconv.ParseFloat(token.PercentageValue(), 64); err == nil {
term = &calcNumeric{loc: token.Loc, number: number, unit: "%"}
} else {
term = &calcValue{token: token}
}
} else if token.Kind == css_lexer.TDimension {
if number, err := strconv.ParseFloat(token.DimensionValue(), 64); err == nil {
term = &calcNumeric{loc: token.Loc, number: number, unit: token.DimensionUnit()}
} else {
term = &calcValue{token: token}
}
} else if token.Kind == css_lexer.TIdent && strings.EqualFold(token.Text, "Infinity") {
term = &calcNumeric{loc: token.Loc, number: math.Inf(1)}
} else if token.Kind == css_lexer.TIdent && strings.EqualFold(token.Text, "-Infinity") {
term = &calcNumeric{loc: token.Loc, number: math.Inf(-1)}
} else if token.Kind == css_lexer.TIdent && strings.EqualFold(token.Text, "NaN") {
term = &calcNumeric{loc: token.Loc, number: math.NaN()}
} else {
term = &calcValue{
token: token,
// From the specification: "In addition, whitespace is required on both sides of the
// + and - operators. (The * and / operators can be used without white space around them.)"
isInvalidPlusOrMinus: i > 0 && i+1 < len(tokens) &&
(token.Kind == css_lexer.TDelimPlus || token.Kind == css_lexer.TDelimMinus) &&
(((token.Whitespace&css_ast.WhitespaceBefore) == 0 && (tokens[i-1].Whitespace&css_ast.WhitespaceAfter) == 0) ||
(token.Whitespace&css_ast.WhitespaceAfter) == 0 && (tokens[i+1].Whitespace&css_ast.WhitespaceBefore) == 0),
}
}
terms[i].data = term
}
// Collect children into Product and Invert nodes
first := 1
for first+1 < len(terms) {
// If this is a "*" or "/" operator
if value, ok := terms[first].data.(*calcValue); ok && (value.token.Kind == css_lexer.TDelimAsterisk || value.token.Kind == css_lexer.TDelimSlash) {
// Scan over the run
last := first
for last+3 < len(terms) {
if value, ok := terms[last+2].data.(*calcValue); ok && (value.token.Kind == css_lexer.TDelimAsterisk || value.token.Kind == css_lexer.TDelimSlash) {
last += 2
} else {
break
}
}
// Generate a node for the run
product := calcProduct{terms: make([]calcTermWithOp, (last-first)/2+2)}
for i := range product.terms {
term := terms[first+i*2-1]
if i > 0 {
op := terms[first+i*2-2].data.(*calcValue).token
term.opLoc = op.Loc
if op.Kind == css_lexer.TDelimSlash {
term.data = &calcInvert{term: term}
}
}
product.terms[i] = term
}
// Replace the run with a single node
terms[first-1].data = &product
terms = append(terms[:first], terms[last+2:]...)
continue
}
first++
}
// Collect children into Sum and Negate nodes
first = 1
for first+1 < len(terms) {
// If this is a "+" or "-" operator
if value, ok := terms[first].data.(*calcValue); ok && !value.isInvalidPlusOrMinus &&
(value.token.Kind == css_lexer.TDelimPlus || value.token.Kind == css_lexer.TDelimMinus) {
// Scan over the run
last := first
for last+3 < len(terms) {
if value, ok := terms[last+2].data.(*calcValue); ok && !value.isInvalidPlusOrMinus &&
(value.token.Kind == css_lexer.TDelimPlus || value.token.Kind == css_lexer.TDelimMinus) {
last += 2
} else {
break
}
}
// Generate a node for the run
sum := calcSum{terms: make([]calcTermWithOp, (last-first)/2+2)}
for i := range sum.terms {
term := terms[first+i*2-1]
if i > 0 {
op := terms[first+i*2-2].data.(*calcValue).token
term.opLoc = op.Loc
if op.Kind == css_lexer.TDelimMinus {
term.data = &calcNegate{term: term}
}
}
sum.terms[i] = term
}
// Replace the run with a single node
terms[first-1].data = &sum
terms = append(terms[:first], terms[last+2:]...)
continue
}
first++
}
// This only succeeds if everything reduces to a single term
if len(terms) == 1 {
return terms[0].data
}
return nil
}
|