1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
// Copyright 2019-present Facebook Inc. All rights reserved.
// This source code is licensed under the Apache 2.0 license found
// in the LICENSE file in the root directory of this source tree.
package sqlgraph
import (
"fmt"
"github.com/facebook/ent/dialect/sql"
"github.com/facebook/ent/entql"
)
type (
// A Schema holds a representation of ent/schema at runtime. Each Node
// represents a single schema-type and its relations in the graph (storage).
//
// It is used for translating common graph traversal operations to the
// underlying SQL storage. For example, an operation like `has_edge(E)`,
// will be translated to an SQL lookup based on the relation type and the
// FK configuration.
Schema struct {
Nodes []*Node
}
// A Node in the graph holds the SQL information for an ent/schema.
Node struct {
NodeSpec
// Type holds the node type (schema name).
Type string
// Fields maps from field names to their spec.
Fields map[string]*FieldSpec
// Edges maps from edge names to their spec.
Edges map[string]struct {
To *Node
Spec *EdgeSpec
}
}
)
// AddE adds an edge to the graph. It fails, if one of the node
// types is missing.
//
// g.AddE("pets", spec, "user", "pet")
// g.AddE("friends", spec, "user", "user")
//
func (g *Schema) AddE(name string, spec *EdgeSpec, from, to string) error {
var fromT, toT *Node
for i := range g.Nodes {
t := g.Nodes[i].Type
if t == from {
fromT = g.Nodes[i]
}
if t == to {
toT = g.Nodes[i]
}
}
if fromT == nil || toT == nil {
return fmt.Errorf("from/to type was not found")
}
if fromT.Edges == nil {
fromT.Edges = make(map[string]struct {
To *Node
Spec *EdgeSpec
})
}
fromT.Edges[name] = struct {
To *Node
Spec *EdgeSpec
}{
To: toT,
Spec: spec,
}
return nil
}
// MustAddE is like AddE but panics if the edge can be added to the graph.
func (g *Schema) MustAddE(name string, spec *EdgeSpec, from, to string) {
if err := g.AddE(name, spec, from, to); err != nil {
panic(err)
}
}
// EvalP evaluates the entql predicate on the given selector (query builder).
func (g *Schema) EvalP(nodeType string, p entql.P, selector *sql.Selector) error {
var node *Node
for i := range g.Nodes {
if g.Nodes[i].Type == nodeType {
node = g.Nodes[i]
break
}
}
if node == nil {
return fmt.Errorf("node %s was not found in the graph schema", nodeType)
}
pr, err := evalExpr(node, selector, p)
if err != nil {
return err
}
selector.Where(pr)
return nil
}
// FuncSelector represents a selector function to be used as an entql foreign-function.
const FuncSelector entql.Func = "func_selector"
// wrappedFunc wraps the selector-function to an ent-expression.
type wrappedFunc struct {
entql.Expr
Func func(*sql.Selector)
}
// WrapFunc wraps a selector-func with an entql call expression.
func WrapFunc(s func(*sql.Selector)) *entql.CallExpr {
return &entql.CallExpr{
Func: FuncSelector,
Args: []entql.Expr{wrappedFunc{Func: s}},
}
}
var (
binary = [...]sql.Op{
entql.OpEQ: sql.OpEQ,
entql.OpNEQ: sql.OpNEQ,
entql.OpGT: sql.OpGT,
entql.OpGTE: sql.OpGTE,
entql.OpLT: sql.OpLT,
entql.OpLTE: sql.OpLTE,
entql.OpIn: sql.OpIn,
entql.OpNotIn: sql.OpNotIn,
}
nary = [...]func(...*sql.Predicate) *sql.Predicate{
entql.OpAnd: sql.And,
entql.OpOr: sql.Or,
}
strFunc = map[entql.Func]func(string, string) *sql.Predicate{
entql.FuncContains: sql.Contains,
entql.FuncContainsFold: sql.ContainsFold,
entql.FuncEqualFold: sql.EqualFold,
entql.FuncHasPrefix: sql.HasPrefix,
entql.FuncHasSuffix: sql.HasSuffix,
}
nullFunc = [...]func(string) *sql.Predicate{
entql.OpEQ: sql.IsNull,
entql.OpNEQ: sql.NotNull,
}
)
// state represents the state of a predicate evaluation.
// Note that, the evaluation output is a predicate to be
// applied on the database.
type state struct {
sql.Builder
context *Node
selector *sql.Selector
}
// evalExpr evaluates the entql expression and returns a new SQL predicate to be applied on the database.
func evalExpr(context *Node, selector *sql.Selector, expr entql.Expr) (p *sql.Predicate, err error) {
ex := &state{
context: context,
selector: selector,
}
defer catch(&err)
p = ex.evalExpr(expr)
return
}
// evalExpr evaluates any expression.
func (e *state) evalExpr(expr entql.Expr) *sql.Predicate {
switch expr := expr.(type) {
case *entql.BinaryExpr:
return e.evalBinary(expr)
case *entql.UnaryExpr:
return sql.Not(e.evalExpr(expr.X))
case *entql.NaryExpr:
ps := make([]*sql.Predicate, len(expr.Xs))
for i, x := range expr.Xs {
ps[i] = e.evalExpr(x)
}
return nary[expr.Op](ps...)
case *entql.CallExpr:
switch expr.Func {
case entql.FuncHasPrefix, entql.FuncHasSuffix, entql.FuncContains, entql.FuncEqualFold, entql.FuncContainsFold:
expect(len(expr.Args) == 2, "invalid number of arguments for %s", expr.Func)
f, ok := expr.Args[0].(*entql.Field)
expect(ok, "*entql.Field, got %T", expr.Args[0])
v, ok := expr.Args[1].(*entql.Value)
expect(ok, "*entql.Value, got %T", expr.Args[1])
s, ok := v.V.(string)
expect(ok, "string value, got %T", v.V)
return strFunc[expr.Func](e.field(f), s)
case entql.FuncHasEdge:
expect(len(expr.Args) > 0, "invalid number of arguments for %s", expr.Func)
edge, ok := expr.Args[0].(*entql.Edge)
expect(ok, "*entql.Edge, got %T", expr.Args[0])
return e.evalEdge(edge.Name, expr.Args[1:]...)
}
}
panic("invalid")
}
// evalBinary evaluates binary expressions.
func (e *state) evalBinary(expr *entql.BinaryExpr) *sql.Predicate {
switch expr.Op {
case entql.OpOr:
return sql.Or(e.evalExpr(expr.X), e.evalExpr(expr.Y))
case entql.OpAnd:
return sql.And(e.evalExpr(expr.X), e.evalExpr(expr.Y))
case entql.OpEQ, entql.OpNEQ:
if expr.Y == (*entql.Value)(nil) {
f, ok := expr.X.(*entql.Field)
expect(ok, "*entql.Field, got %T", expr.Y)
return nullFunc[expr.Op](e.field(f))
}
fallthrough
default:
field, ok := expr.X.(*entql.Field)
expect(ok, "expr.X to be *entql.Field (got %T)", expr.X)
_, ok = expr.Y.(*entql.Field)
if !ok {
_, ok = expr.Y.(*entql.Value)
}
expect(ok, "expr.Y to be *entql.Field or *entql.Value (got %T)", expr.X)
return sql.P(func(b *sql.Builder) {
b.Ident(e.field(field))
b.WriteOp(binary[expr.Op])
switch x := expr.Y.(type) {
case *entql.Field:
b.Ident(e.field(x))
case *entql.Value:
args(b, x)
}
})
}
}
// evalEdge evaluates has-edge and has-edge-with calls.
func (e *state) evalEdge(name string, exprs ...entql.Expr) *sql.Predicate {
edge, ok := e.context.Edges[name]
expect(ok, "edge %q was not found for node %q", name, e.context.Type)
step := NewStep(
From(e.context.Table, e.context.ID.Column),
To(edge.To.Table, edge.To.ID.Column),
Edge(edge.Spec.Rel, edge.Spec.Inverse, edge.Spec.Table, edge.Spec.Columns...),
)
selector := e.selector.Clone().SetP(nil)
selector.SetTotal(e.Total())
if len(exprs) == 0 {
HasNeighbors(selector, step)
return selector.P()
}
HasNeighborsWith(selector, step, func(s *sql.Selector) {
for _, expr := range exprs {
if cx, ok := expr.(*entql.CallExpr); ok && cx.Func == FuncSelector {
expect(len(cx.Args) == 1, "invalid number of arguments for %s", FuncSelector)
wrapped, ok := cx.Args[0].(wrappedFunc)
expect(ok, "invalid argument for %s: %T", FuncSelector, cx.Args[0])
wrapped.Func(s)
} else {
p, err := evalExpr(edge.To, s, expr)
expect(err == nil, "edge evaluation failed for %s->%s: %s", e.context.Type, name, err)
s.Where(p)
}
}
})
return selector.P()
}
func (e *state) field(f *entql.Field) string {
_, ok := e.context.Fields[f.Name]
expect(ok || e.context.ID.Column == f.Name, "field %q was not found for node %q", f.Name, e.context.Type)
return f.Name
}
func args(b *sql.Builder, v *entql.Value) {
vs, ok := v.V.([]interface{})
if !ok {
b.Arg(v.V)
return
}
b.Args(vs...)
}
// expect panics if the condition is false.
func expect(cond bool, msg string, args ...interface{}) {
if !cond {
panic(evalError{fmt.Sprintf("expect "+msg, args...)})
}
}
type evalError struct {
msg string
}
func (p evalError) Error() string {
return fmt.Sprintf("sqlgraph: %s", p.msg)
}
func catch(err *error) {
if e := recover(); e != nil {
xerr, ok := e.(evalError)
if !ok {
panic(e)
}
*err = xerr
}
}
|