1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright 2019-present Facebook Inc. All rights reserved.
// This source code is licensed under the Apache 2.0 license found
// in the LICENSE file in the root directory of this source tree.
// Code generated by entc, DO NOT EDIT.
package pet
import (
"github.com/facebook/ent/dialect/sql"
"github.com/facebook/ent/dialect/sql/sqlgraph"
"github.com/facebook/ent/entc/integration/customid/ent/predicate"
)
// ID filters vertices based on their ID field.
func ID(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id string) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// HasOwner applies the HasEdge predicate on the "owner" edge.
func HasOwner() predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(OwnerTable, UserFieldID),
sqlgraph.Edge(sqlgraph.M2O, true, OwnerTable, OwnerColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasOwnerWith applies the HasEdge predicate on the "owner" edge with a given conditions (other predicates).
func HasOwnerWith(preds ...predicate.User) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(OwnerInverseTable, UserFieldID),
sqlgraph.Edge(sqlgraph.M2O, true, OwnerTable, OwnerColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasCars applies the HasEdge predicate on the "cars" edge.
func HasCars() predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(CarsTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, CarsTable, CarsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasCarsWith applies the HasEdge predicate on the "cars" edge with a given conditions (other predicates).
func HasCarsWith(preds ...predicate.Car) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(CarsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, CarsTable, CarsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasFriends applies the HasEdge predicate on the "friends" edge.
func HasFriends() predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(FriendsTable, FieldID),
sqlgraph.Edge(sqlgraph.M2M, false, FriendsTable, FriendsPrimaryKey...),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasFriendsWith applies the HasEdge predicate on the "friends" edge with a given conditions (other predicates).
func HasFriendsWith(preds ...predicate.Pet) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(Table, FieldID),
sqlgraph.Edge(sqlgraph.M2M, false, FriendsTable, FriendsPrimaryKey...),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasBestFriend applies the HasEdge predicate on the "best_friend" edge.
func HasBestFriend() predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(BestFriendTable, FieldID),
sqlgraph.Edge(sqlgraph.O2O, false, BestFriendTable, BestFriendColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasBestFriendWith applies the HasEdge predicate on the "best_friend" edge with a given conditions (other predicates).
func HasBestFriendWith(preds ...predicate.Pet) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2O, false, BestFriendTable, BestFriendColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Pet) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Pet) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Pet) predicate.Pet {
return predicate.Pet(func(s *sql.Selector) {
p(s.Not())
})
}
|