File: types.go

package info (click to toggle)
golang-github-facebook-ent 0.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,284 kB
  • sloc: javascript: 349; makefile: 8
file content (1658 lines) | stat: -rw-r--r-- 41,957 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
// Copyright 2019-present Facebook Inc. All rights reserved.
// This source code is licensed under the Apache 2.0 license found
// in the LICENSE file in the root directory of this source tree.

// Code generated by internal/gen.go, DO NOT EDIT.

package entql

import (
	"database/sql/driver"
	"time"
)

//go:generate go run internal/gen.go

// Fielder is the interface for creating a predicate (entql.P)
// by a field name from the different builder types below.
type Fielder interface {
	Field(string) P
}

// BoolP is the interface for predicates of type bool (`type P[bool]`).
type BoolP interface {
	Fielder
	bool()
}

// boolP implements the BoolP interface.
type boolP struct {
	P
	done func(string)
}

func (p *boolP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*boolP) bool() {}

// BoolEQ applies the EQ operation on the given value.
func BoolEQ(v bool) BoolP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &boolP{P: EQ(field, value), done: done}
}

// BoolNEQ applies the NEQ operation on the given value.
func BoolNEQ(v bool) BoolP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &boolP{P: NEQ(field, value), done: done}
}

// BoolOr returns a composed predicate that represents the logical OR predicate.
func BoolOr(x, y BoolP, z ...BoolP) BoolP {
	expr := &boolP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// BoolAnd returns a composed predicate that represents the logical AND predicate.
func BoolAnd(x, y BoolP, z ...BoolP) BoolP {
	expr := &boolP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// BoolNot returns a predicate that represents the logical negation of the given predicate.
func BoolNot(x BoolP) BoolP {
	expr := &boolP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// BytesP is the interface for predicates of type []byte (`type P[[]byte]`).
type BytesP interface {
	Fielder
	bytes()
}

// bytesP implements the BytesP interface.
type bytesP struct {
	P
	done func(string)
}

func (p *bytesP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*bytesP) bytes() {}

// BytesEQ applies the EQ operation on the given value.
func BytesEQ(v []byte) BytesP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &bytesP{P: EQ(field, value), done: done}
}

// BytesNEQ applies the NEQ operation on the given value.
func BytesNEQ(v []byte) BytesP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &bytesP{P: NEQ(field, value), done: done}
}

// BytesOr returns a composed predicate that represents the logical OR predicate.
func BytesOr(x, y BytesP, z ...BytesP) BytesP {
	expr := &bytesP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// BytesAnd returns a composed predicate that represents the logical AND predicate.
func BytesAnd(x, y BytesP, z ...BytesP) BytesP {
	expr := &bytesP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// BytesNot returns a predicate that represents the logical negation of the given predicate.
func BytesNot(x BytesP) BytesP {
	expr := &bytesP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// TimeP is the interface for predicates of type time.Time (`type P[time.Time]`).
type TimeP interface {
	Fielder
	time()
}

// timeP implements the TimeP interface.
type timeP struct {
	P
	done func(string)
}

func (p *timeP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*timeP) time() {}

// TimeEQ applies the EQ operation on the given value.
func TimeEQ(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: EQ(field, value), done: done}
}

// TimeNEQ applies the NEQ operation on the given value.
func TimeNEQ(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: NEQ(field, value), done: done}
}

// TimeLT applies the LT operation on the given value.
func TimeLT(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: LT(field, value), done: done}
}

// TimeLTE applies the LTE operation on the given value.
func TimeLTE(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: LTE(field, value), done: done}
}

// TimeGT applies the GT operation on the given value.
func TimeGT(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: GT(field, value), done: done}
}

// TimeGTE applies the GTE operation on the given value.
func TimeGTE(v time.Time) TimeP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &timeP{P: GTE(field, value), done: done}
}

// TimeOr returns a composed predicate that represents the logical OR predicate.
func TimeOr(x, y TimeP, z ...TimeP) TimeP {
	expr := &timeP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// TimeAnd returns a composed predicate that represents the logical AND predicate.
func TimeAnd(x, y TimeP, z ...TimeP) TimeP {
	expr := &timeP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// TimeNot returns a predicate that represents the logical negation of the given predicate.
func TimeNot(x TimeP) TimeP {
	expr := &timeP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// UintP is the interface for predicates of type uint (`type P[uint]`).
type UintP interface {
	Fielder
	uint()
}

// uintP implements the UintP interface.
type uintP struct {
	P
	done func(string)
}

func (p *uintP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*uintP) uint() {}

// UintEQ applies the EQ operation on the given value.
func UintEQ(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: EQ(field, value), done: done}
}

// UintNEQ applies the NEQ operation on the given value.
func UintNEQ(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: NEQ(field, value), done: done}
}

// UintLT applies the LT operation on the given value.
func UintLT(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: LT(field, value), done: done}
}

// UintLTE applies the LTE operation on the given value.
func UintLTE(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: LTE(field, value), done: done}
}

// UintGT applies the GT operation on the given value.
func UintGT(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: GT(field, value), done: done}
}

// UintGTE applies the GTE operation on the given value.
func UintGTE(v uint) UintP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uintP{P: GTE(field, value), done: done}
}

// UintOr returns a composed predicate that represents the logical OR predicate.
func UintOr(x, y UintP, z ...UintP) UintP {
	expr := &uintP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// UintAnd returns a composed predicate that represents the logical AND predicate.
func UintAnd(x, y UintP, z ...UintP) UintP {
	expr := &uintP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// UintNot returns a predicate that represents the logical negation of the given predicate.
func UintNot(x UintP) UintP {
	expr := &uintP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Uint8P is the interface for predicates of type uint8 (`type P[uint8]`).
type Uint8P interface {
	Fielder
	uint8()
}

// uint8P implements the Uint8P interface.
type uint8P struct {
	P
	done func(string)
}

func (p *uint8P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*uint8P) uint8() {}

// Uint8EQ applies the EQ operation on the given value.
func Uint8EQ(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: EQ(field, value), done: done}
}

// Uint8NEQ applies the NEQ operation on the given value.
func Uint8NEQ(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: NEQ(field, value), done: done}
}

// Uint8LT applies the LT operation on the given value.
func Uint8LT(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: LT(field, value), done: done}
}

// Uint8LTE applies the LTE operation on the given value.
func Uint8LTE(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: LTE(field, value), done: done}
}

// Uint8GT applies the GT operation on the given value.
func Uint8GT(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: GT(field, value), done: done}
}

// Uint8GTE applies the GTE operation on the given value.
func Uint8GTE(v uint8) Uint8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint8P{P: GTE(field, value), done: done}
}

// Uint8Or returns a composed predicate that represents the logical OR predicate.
func Uint8Or(x, y Uint8P, z ...Uint8P) Uint8P {
	expr := &uint8P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint8And returns a composed predicate that represents the logical AND predicate.
func Uint8And(x, y Uint8P, z ...Uint8P) Uint8P {
	expr := &uint8P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint8Not returns a predicate that represents the logical negation of the given predicate.
func Uint8Not(x Uint8P) Uint8P {
	expr := &uint8P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Uint16P is the interface for predicates of type uint16 (`type P[uint16]`).
type Uint16P interface {
	Fielder
	uint16()
}

// uint16P implements the Uint16P interface.
type uint16P struct {
	P
	done func(string)
}

func (p *uint16P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*uint16P) uint16() {}

// Uint16EQ applies the EQ operation on the given value.
func Uint16EQ(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: EQ(field, value), done: done}
}

// Uint16NEQ applies the NEQ operation on the given value.
func Uint16NEQ(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: NEQ(field, value), done: done}
}

// Uint16LT applies the LT operation on the given value.
func Uint16LT(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: LT(field, value), done: done}
}

// Uint16LTE applies the LTE operation on the given value.
func Uint16LTE(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: LTE(field, value), done: done}
}

// Uint16GT applies the GT operation on the given value.
func Uint16GT(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: GT(field, value), done: done}
}

// Uint16GTE applies the GTE operation on the given value.
func Uint16GTE(v uint16) Uint16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint16P{P: GTE(field, value), done: done}
}

// Uint16Or returns a composed predicate that represents the logical OR predicate.
func Uint16Or(x, y Uint16P, z ...Uint16P) Uint16P {
	expr := &uint16P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint16And returns a composed predicate that represents the logical AND predicate.
func Uint16And(x, y Uint16P, z ...Uint16P) Uint16P {
	expr := &uint16P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint16Not returns a predicate that represents the logical negation of the given predicate.
func Uint16Not(x Uint16P) Uint16P {
	expr := &uint16P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Uint32P is the interface for predicates of type uint32 (`type P[uint32]`).
type Uint32P interface {
	Fielder
	uint32()
}

// uint32P implements the Uint32P interface.
type uint32P struct {
	P
	done func(string)
}

func (p *uint32P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*uint32P) uint32() {}

// Uint32EQ applies the EQ operation on the given value.
func Uint32EQ(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: EQ(field, value), done: done}
}

// Uint32NEQ applies the NEQ operation on the given value.
func Uint32NEQ(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: NEQ(field, value), done: done}
}

// Uint32LT applies the LT operation on the given value.
func Uint32LT(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: LT(field, value), done: done}
}

// Uint32LTE applies the LTE operation on the given value.
func Uint32LTE(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: LTE(field, value), done: done}
}

// Uint32GT applies the GT operation on the given value.
func Uint32GT(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: GT(field, value), done: done}
}

// Uint32GTE applies the GTE operation on the given value.
func Uint32GTE(v uint32) Uint32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint32P{P: GTE(field, value), done: done}
}

// Uint32Or returns a composed predicate that represents the logical OR predicate.
func Uint32Or(x, y Uint32P, z ...Uint32P) Uint32P {
	expr := &uint32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint32And returns a composed predicate that represents the logical AND predicate.
func Uint32And(x, y Uint32P, z ...Uint32P) Uint32P {
	expr := &uint32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint32Not returns a predicate that represents the logical negation of the given predicate.
func Uint32Not(x Uint32P) Uint32P {
	expr := &uint32P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Uint64P is the interface for predicates of type uint64 (`type P[uint64]`).
type Uint64P interface {
	Fielder
	uint64()
}

// uint64P implements the Uint64P interface.
type uint64P struct {
	P
	done func(string)
}

func (p *uint64P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*uint64P) uint64() {}

// Uint64EQ applies the EQ operation on the given value.
func Uint64EQ(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: EQ(field, value), done: done}
}

// Uint64NEQ applies the NEQ operation on the given value.
func Uint64NEQ(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: NEQ(field, value), done: done}
}

// Uint64LT applies the LT operation on the given value.
func Uint64LT(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: LT(field, value), done: done}
}

// Uint64LTE applies the LTE operation on the given value.
func Uint64LTE(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: LTE(field, value), done: done}
}

// Uint64GT applies the GT operation on the given value.
func Uint64GT(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: GT(field, value), done: done}
}

// Uint64GTE applies the GTE operation on the given value.
func Uint64GTE(v uint64) Uint64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &uint64P{P: GTE(field, value), done: done}
}

// Uint64Or returns a composed predicate that represents the logical OR predicate.
func Uint64Or(x, y Uint64P, z ...Uint64P) Uint64P {
	expr := &uint64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint64And returns a composed predicate that represents the logical AND predicate.
func Uint64And(x, y Uint64P, z ...Uint64P) Uint64P {
	expr := &uint64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Uint64Not returns a predicate that represents the logical negation of the given predicate.
func Uint64Not(x Uint64P) Uint64P {
	expr := &uint64P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// IntP is the interface for predicates of type int (`type P[int]`).
type IntP interface {
	Fielder
	int()
}

// intP implements the IntP interface.
type intP struct {
	P
	done func(string)
}

func (p *intP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*intP) int() {}

// IntEQ applies the EQ operation on the given value.
func IntEQ(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: EQ(field, value), done: done}
}

// IntNEQ applies the NEQ operation on the given value.
func IntNEQ(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: NEQ(field, value), done: done}
}

// IntLT applies the LT operation on the given value.
func IntLT(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: LT(field, value), done: done}
}

// IntLTE applies the LTE operation on the given value.
func IntLTE(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: LTE(field, value), done: done}
}

// IntGT applies the GT operation on the given value.
func IntGT(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: GT(field, value), done: done}
}

// IntGTE applies the GTE operation on the given value.
func IntGTE(v int) IntP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &intP{P: GTE(field, value), done: done}
}

// IntOr returns a composed predicate that represents the logical OR predicate.
func IntOr(x, y IntP, z ...IntP) IntP {
	expr := &intP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// IntAnd returns a composed predicate that represents the logical AND predicate.
func IntAnd(x, y IntP, z ...IntP) IntP {
	expr := &intP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// IntNot returns a predicate that represents the logical negation of the given predicate.
func IntNot(x IntP) IntP {
	expr := &intP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Int8P is the interface for predicates of type int8 (`type P[int8]`).
type Int8P interface {
	Fielder
	int8()
}

// int8P implements the Int8P interface.
type int8P struct {
	P
	done func(string)
}

func (p *int8P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*int8P) int8() {}

// Int8EQ applies the EQ operation on the given value.
func Int8EQ(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: EQ(field, value), done: done}
}

// Int8NEQ applies the NEQ operation on the given value.
func Int8NEQ(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: NEQ(field, value), done: done}
}

// Int8LT applies the LT operation on the given value.
func Int8LT(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: LT(field, value), done: done}
}

// Int8LTE applies the LTE operation on the given value.
func Int8LTE(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: LTE(field, value), done: done}
}

// Int8GT applies the GT operation on the given value.
func Int8GT(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: GT(field, value), done: done}
}

// Int8GTE applies the GTE operation on the given value.
func Int8GTE(v int8) Int8P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int8P{P: GTE(field, value), done: done}
}

// Int8Or returns a composed predicate that represents the logical OR predicate.
func Int8Or(x, y Int8P, z ...Int8P) Int8P {
	expr := &int8P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int8And returns a composed predicate that represents the logical AND predicate.
func Int8And(x, y Int8P, z ...Int8P) Int8P {
	expr := &int8P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int8Not returns a predicate that represents the logical negation of the given predicate.
func Int8Not(x Int8P) Int8P {
	expr := &int8P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Int16P is the interface for predicates of type int16 (`type P[int16]`).
type Int16P interface {
	Fielder
	int16()
}

// int16P implements the Int16P interface.
type int16P struct {
	P
	done func(string)
}

func (p *int16P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*int16P) int16() {}

// Int16EQ applies the EQ operation on the given value.
func Int16EQ(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: EQ(field, value), done: done}
}

// Int16NEQ applies the NEQ operation on the given value.
func Int16NEQ(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: NEQ(field, value), done: done}
}

// Int16LT applies the LT operation on the given value.
func Int16LT(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: LT(field, value), done: done}
}

// Int16LTE applies the LTE operation on the given value.
func Int16LTE(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: LTE(field, value), done: done}
}

// Int16GT applies the GT operation on the given value.
func Int16GT(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: GT(field, value), done: done}
}

// Int16GTE applies the GTE operation on the given value.
func Int16GTE(v int16) Int16P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int16P{P: GTE(field, value), done: done}
}

// Int16Or returns a composed predicate that represents the logical OR predicate.
func Int16Or(x, y Int16P, z ...Int16P) Int16P {
	expr := &int16P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int16And returns a composed predicate that represents the logical AND predicate.
func Int16And(x, y Int16P, z ...Int16P) Int16P {
	expr := &int16P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int16Not returns a predicate that represents the logical negation of the given predicate.
func Int16Not(x Int16P) Int16P {
	expr := &int16P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Int32P is the interface for predicates of type int32 (`type P[int32]`).
type Int32P interface {
	Fielder
	int32()
}

// int32P implements the Int32P interface.
type int32P struct {
	P
	done func(string)
}

func (p *int32P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*int32P) int32() {}

// Int32EQ applies the EQ operation on the given value.
func Int32EQ(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: EQ(field, value), done: done}
}

// Int32NEQ applies the NEQ operation on the given value.
func Int32NEQ(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: NEQ(field, value), done: done}
}

// Int32LT applies the LT operation on the given value.
func Int32LT(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: LT(field, value), done: done}
}

// Int32LTE applies the LTE operation on the given value.
func Int32LTE(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: LTE(field, value), done: done}
}

// Int32GT applies the GT operation on the given value.
func Int32GT(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: GT(field, value), done: done}
}

// Int32GTE applies the GTE operation on the given value.
func Int32GTE(v int32) Int32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int32P{P: GTE(field, value), done: done}
}

// Int32Or returns a composed predicate that represents the logical OR predicate.
func Int32Or(x, y Int32P, z ...Int32P) Int32P {
	expr := &int32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int32And returns a composed predicate that represents the logical AND predicate.
func Int32And(x, y Int32P, z ...Int32P) Int32P {
	expr := &int32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int32Not returns a predicate that represents the logical negation of the given predicate.
func Int32Not(x Int32P) Int32P {
	expr := &int32P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Int64P is the interface for predicates of type int64 (`type P[int64]`).
type Int64P interface {
	Fielder
	int64()
}

// int64P implements the Int64P interface.
type int64P struct {
	P
	done func(string)
}

func (p *int64P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*int64P) int64() {}

// Int64EQ applies the EQ operation on the given value.
func Int64EQ(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: EQ(field, value), done: done}
}

// Int64NEQ applies the NEQ operation on the given value.
func Int64NEQ(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: NEQ(field, value), done: done}
}

// Int64LT applies the LT operation on the given value.
func Int64LT(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: LT(field, value), done: done}
}

// Int64LTE applies the LTE operation on the given value.
func Int64LTE(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: LTE(field, value), done: done}
}

// Int64GT applies the GT operation on the given value.
func Int64GT(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: GT(field, value), done: done}
}

// Int64GTE applies the GTE operation on the given value.
func Int64GTE(v int64) Int64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &int64P{P: GTE(field, value), done: done}
}

// Int64Or returns a composed predicate that represents the logical OR predicate.
func Int64Or(x, y Int64P, z ...Int64P) Int64P {
	expr := &int64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int64And returns a composed predicate that represents the logical AND predicate.
func Int64And(x, y Int64P, z ...Int64P) Int64P {
	expr := &int64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Int64Not returns a predicate that represents the logical negation of the given predicate.
func Int64Not(x Int64P) Int64P {
	expr := &int64P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Float32P is the interface for predicates of type float32 (`type P[float32]`).
type Float32P interface {
	Fielder
	float32()
}

// float32P implements the Float32P interface.
type float32P struct {
	P
	done func(string)
}

func (p *float32P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*float32P) float32() {}

// Float32EQ applies the EQ operation on the given value.
func Float32EQ(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: EQ(field, value), done: done}
}

// Float32NEQ applies the NEQ operation on the given value.
func Float32NEQ(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: NEQ(field, value), done: done}
}

// Float32LT applies the LT operation on the given value.
func Float32LT(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: LT(field, value), done: done}
}

// Float32LTE applies the LTE operation on the given value.
func Float32LTE(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: LTE(field, value), done: done}
}

// Float32GT applies the GT operation on the given value.
func Float32GT(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: GT(field, value), done: done}
}

// Float32GTE applies the GTE operation on the given value.
func Float32GTE(v float32) Float32P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float32P{P: GTE(field, value), done: done}
}

// Float32Or returns a composed predicate that represents the logical OR predicate.
func Float32Or(x, y Float32P, z ...Float32P) Float32P {
	expr := &float32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Float32And returns a composed predicate that represents the logical AND predicate.
func Float32And(x, y Float32P, z ...Float32P) Float32P {
	expr := &float32P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Float32Not returns a predicate that represents the logical negation of the given predicate.
func Float32Not(x Float32P) Float32P {
	expr := &float32P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// Float64P is the interface for predicates of type float64 (`type P[float64]`).
type Float64P interface {
	Fielder
	float64()
}

// float64P implements the Float64P interface.
type float64P struct {
	P
	done func(string)
}

func (p *float64P) Field(name string) P {
	p.done(name)
	return p.P
}

func (*float64P) float64() {}

// Float64EQ applies the EQ operation on the given value.
func Float64EQ(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: EQ(field, value), done: done}
}

// Float64NEQ applies the NEQ operation on the given value.
func Float64NEQ(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: NEQ(field, value), done: done}
}

// Float64LT applies the LT operation on the given value.
func Float64LT(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: LT(field, value), done: done}
}

// Float64LTE applies the LTE operation on the given value.
func Float64LTE(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: LTE(field, value), done: done}
}

// Float64GT applies the GT operation on the given value.
func Float64GT(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: GT(field, value), done: done}
}

// Float64GTE applies the GTE operation on the given value.
func Float64GTE(v float64) Float64P {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &float64P{P: GTE(field, value), done: done}
}

// Float64Or returns a composed predicate that represents the logical OR predicate.
func Float64Or(x, y Float64P, z ...Float64P) Float64P {
	expr := &float64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Float64And returns a composed predicate that represents the logical AND predicate.
func Float64And(x, y Float64P, z ...Float64P) Float64P {
	expr := &float64P{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// Float64Not returns a predicate that represents the logical negation of the given predicate.
func Float64Not(x Float64P) Float64P {
	expr := &float64P{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// StringP is the interface for predicates of type string (`type P[string]`).
type StringP interface {
	Fielder
	string()
}

// stringP implements the StringP interface.
type stringP struct {
	P
	done func(string)
}

func (p *stringP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*stringP) string() {}

// StringEQ applies the EQ operation on the given value.
func StringEQ(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: EQ(field, value), done: done}
}

// StringNEQ applies the NEQ operation on the given value.
func StringNEQ(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: NEQ(field, value), done: done}
}

// StringLT applies the LT operation on the given value.
func StringLT(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: LT(field, value), done: done}
}

// StringLTE applies the LTE operation on the given value.
func StringLTE(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: LTE(field, value), done: done}
}

// StringGT applies the GT operation on the given value.
func StringGT(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: GT(field, value), done: done}
}

// StringGTE applies the GTE operation on the given value.
func StringGTE(v string) StringP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &stringP{P: GTE(field, value), done: done}
}

// StringOr returns a composed predicate that represents the logical OR predicate.
func StringOr(x, y StringP, z ...StringP) StringP {
	expr := &stringP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// StringAnd returns a composed predicate that represents the logical AND predicate.
func StringAnd(x, y StringP, z ...StringP) StringP {
	expr := &stringP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// StringNot returns a predicate that represents the logical negation of the given predicate.
func StringNot(x StringP) StringP {
	expr := &stringP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}

// ValueP is the interface for predicates of type [16]byte (`type P[[16]byte]`).
type ValueP interface {
	Fielder
	value()
}

// valueP implements the ValueP interface.
type valueP struct {
	P
	done func(string)
}

func (p *valueP) Field(name string) P {
	p.done(name)
	return p.P
}

func (*valueP) value() {}

// ValueEQ applies the EQ operation on the given value.
func ValueEQ(v driver.Valuer) ValueP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &valueP{P: EQ(field, value), done: done}
}

// ValueNEQ applies the NEQ operation on the given value.
func ValueNEQ(v driver.Valuer) ValueP {
	field := &Field{}
	value := &Value{V: v}
	done := func(name string) { field.Name = name }
	return &valueP{P: NEQ(field, value), done: done}
}

// ValueOr returns a composed predicate that represents the logical OR predicate.
func ValueOr(x, y ValueP, z ...ValueP) ValueP {
	expr := &valueP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = Or(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// ValueAnd returns a composed predicate that represents the logical AND predicate.
func ValueAnd(x, y ValueP, z ...ValueP) ValueP {
	expr := &valueP{}
	expr.done = func(name string) {
		zs := make([]P, len(z))
		for i := range z {
			zs[i] = z[i].Field(name)
		}
		expr.P = And(x.Field(name), y.Field(name), zs...)
	}
	return expr
}

// ValueNot returns a predicate that represents the logical negation of the given predicate.
func ValueNot(x ValueP) ValueP {
	expr := &valueP{}
	expr.done = func(name string) {
		expr.P = Not(x.Field(name))
	}
	return expr
}