1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright 2019-present Facebook Inc. All rights reserved.
// This source code is licensed under the Apache 2.0 license found
// in the LICENSE file in the root directory of this source tree.
// Code generated by entc, DO NOT EDIT.
package group
import (
"github.com/facebook/ent/dialect/sql"
"github.com/facebook/ent/dialect/sql/sqlgraph"
"github.com/facebook/ent/examples/traversal/ent/predicate"
)
// ID filters vertices based on their ID field.
func ID(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id int) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// Name applies equality check predicate on the "name" field. It's identical to NameEQ.
func Name(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// NameEQ applies the EQ predicate on the "name" field.
func NameEQ(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// NameNEQ applies the NEQ predicate on the "name" field.
func NameNEQ(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldName), v))
})
}
// NameIn applies the In predicate on the "name" field.
func NameIn(vs ...string) predicate.Group {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldName), v...))
})
}
// NameNotIn applies the NotIn predicate on the "name" field.
func NameNotIn(vs ...string) predicate.Group {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldName), v...))
})
}
// NameGT applies the GT predicate on the "name" field.
func NameGT(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldName), v))
})
}
// NameGTE applies the GTE predicate on the "name" field.
func NameGTE(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldName), v))
})
}
// NameLT applies the LT predicate on the "name" field.
func NameLT(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldName), v))
})
}
// NameLTE applies the LTE predicate on the "name" field.
func NameLTE(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldName), v))
})
}
// NameContains applies the Contains predicate on the "name" field.
func NameContains(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.Contains(s.C(FieldName), v))
})
}
// NameHasPrefix applies the HasPrefix predicate on the "name" field.
func NameHasPrefix(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.HasPrefix(s.C(FieldName), v))
})
}
// NameHasSuffix applies the HasSuffix predicate on the "name" field.
func NameHasSuffix(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.HasSuffix(s.C(FieldName), v))
})
}
// NameEqualFold applies the EqualFold predicate on the "name" field.
func NameEqualFold(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EqualFold(s.C(FieldName), v))
})
}
// NameContainsFold applies the ContainsFold predicate on the "name" field.
func NameContainsFold(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.ContainsFold(s.C(FieldName), v))
})
}
// HasUsers applies the HasEdge predicate on the "users" edge.
func HasUsers() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(UsersTable, FieldID),
sqlgraph.Edge(sqlgraph.M2M, false, UsersTable, UsersPrimaryKey...),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasUsersWith applies the HasEdge predicate on the "users" edge with a given conditions (other predicates).
func HasUsersWith(preds ...predicate.User) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(UsersInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.M2M, false, UsersTable, UsersPrimaryKey...),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasAdmin applies the HasEdge predicate on the "admin" edge.
func HasAdmin() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(AdminTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, false, AdminTable, AdminColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasAdminWith applies the HasEdge predicate on the "admin" edge with a given conditions (other predicates).
func HasAdminWith(preds ...predicate.User) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(AdminInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, false, AdminTable, AdminColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
p(s.Not())
})
}
|