1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Package fernet takes a user-provided message (an arbitrary
// sequence of bytes), a key (256 bits), and the current time,
// and produces a token, which contains the message in a form
// that can't be read or altered without the key.
//
// For more information and background, see the Fernet spec
// at https://github.com/fernet/spec.
//
// Subdirectories in this package provide command-line tools
// for working with Fernet keys and tokens.
package fernet
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/subtle"
"encoding/base64"
"encoding/binary"
"io"
"time"
)
const (
version byte = 0x80
tsOffset = 1
ivOffset = tsOffset + 8
payOffset = ivOffset + aes.BlockSize
overhead = 1 + 8 + aes.BlockSize + sha256.Size // ver + ts + iv + hmac
maxClockSkew = 60 * time.Second
)
var encoding = base64.URLEncoding
// generates a token from msg, writes it into tok, and returns the
// number of bytes generated, which is encodedLen(msg).
// len(tok) must be >= encodedLen(len(msg))
func gen(tok, msg, iv []byte, ts time.Time, k *Key) int {
tok[0] = version
binary.BigEndian.PutUint64(tok[tsOffset:], uint64(ts.Unix()))
copy(tok[ivOffset:], iv)
p := tok[payOffset:]
n := pad(p, msg, aes.BlockSize)
bc, _ := aes.NewCipher(k.cryptBytes())
cipher.NewCBCEncrypter(bc, iv).CryptBlocks(p[:n], p[:n])
genhmac(p[n:n], tok[:payOffset+n], k.signBytes())
return payOffset + n + sha256.Size
}
// token length for input msg of length n, not including base64
func encodedLen(n int) int {
const k = aes.BlockSize
return n/k*k + k + overhead
}
// max msg length for tok of length n, for binary token (no base64)
// upper bound; not exact
func decodedLen(n int) int {
return n - overhead
}
// if msg is nil, decrypts in place and returns a slice of tok.
func verify(msg, tok []byte, ttl time.Duration, now time.Time, k *Key) []byte {
if len(tok) < 1 || tok[0] != version {
return nil
}
ts := time.Unix(int64(binary.BigEndian.Uint64(tok[1:])), 0)
if ttl > 0 && (now.After(ts.Add(ttl)) || ts.After(now.Add(maxClockSkew))) {
return nil
}
n := len(tok) - sha256.Size
var hmac [sha256.Size]byte
genhmac(hmac[:0], tok[:n], k.signBytes())
if subtle.ConstantTimeCompare(tok[n:], hmac[:]) != 1 {
return nil
}
pay := tok[payOffset : len(tok)-sha256.Size]
if len(pay)%aes.BlockSize != 0 {
return nil
}
if msg != nil {
copy(msg, pay)
pay = msg
}
bc, _ := aes.NewCipher(k.cryptBytes())
iv := tok[9:][:aes.BlockSize]
cipher.NewCBCDecrypter(bc, iv).CryptBlocks(pay, pay)
return unpad(pay)
}
// Pads p to a multiple of k using PKCS #7 standard block padding.
// See http://tools.ietf.org/html/rfc5652#section-6.3.
func pad(q, p []byte, k int) int {
n := len(p)/k*k + k
copy(q, p)
c := byte(n - len(p))
for i := len(p); i < n; i++ {
q[i] = c
}
return n
}
// Removes PKCS #7 standard block padding from p.
// See http://tools.ietf.org/html/rfc5652#section-6.3.
// This function is the inverse of pad.
// If the padding is not well-formed, unpad returns nil.
func unpad(p []byte) []byte {
c := p[len(p)-1]
for i := len(p) - int(c); i < len(p); i++ {
if i < 0 || p[i] != c {
return nil
}
}
return p[:len(p)-int(c)]
}
func b64enc(src []byte) []byte {
dst := make([]byte, encoding.EncodedLen(len(src)))
encoding.Encode(dst, src)
return dst
}
func b64dec(src []byte) []byte {
dst := make([]byte, encoding.DecodedLen(len(src)))
n, err := encoding.Decode(dst, src)
if err != nil {
return nil
}
return dst[:n]
}
func genhmac(q, p, k []byte) {
h := hmac.New(sha256.New, k)
h.Write(p)
h.Sum(q)
}
// EncryptAndSign encrypts and signs msg with key k and returns the resulting
// fernet token. If msg contains text, the text should be encoded
// with UTF-8 to follow fernet convention.
func EncryptAndSign(msg []byte, k *Key) (tok []byte, err error) {
iv := make([]byte, aes.BlockSize)
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
b := make([]byte, encodedLen(len(msg)))
n := gen(b, msg, iv, time.Now(), k)
tok = make([]byte, encoding.EncodedLen(n))
encoding.Encode(tok, b[:n])
return tok, nil
}
// VerifyAndDecrypt verifies that tok is a valid fernet token that was signed
// with a key in k at most ttl time ago only if ttl is greater than zero.
// Returns the message contained in tok if tok is valid, otherwise nil.
func VerifyAndDecrypt(tok []byte, ttl time.Duration, k []*Key) (msg []byte) {
b := make([]byte, encoding.DecodedLen(len(tok)))
n, _ := encoding.Decode(b, tok)
for _, k1 := range k {
msg = verify(nil, b[:n], ttl, time.Now(), k1)
if msg != nil {
return msg
}
}
return nil
}
|