File: encode.go

package info (click to toggle)
golang-github-fxamacker-cbor 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,800 kB
  • sloc: makefile: 2
file content (2299 lines) | stat: -rw-r--r-- 71,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.

package cbor

import (
	"bytes"
	"encoding"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"
	"math/big"
	"math/rand"
	"reflect"
	"sort"
	"strconv"
	"sync"
	"time"

	"github.com/x448/float16"
)

// Marshal returns the CBOR encoding of v using default encoding options.
// See EncOptions for encoding options.
//
// Marshal uses the following encoding rules:
//
// If value implements the Marshaler interface, Marshal calls its
// MarshalCBOR method.
//
// If value implements encoding.BinaryMarshaler, Marhsal calls its
// MarshalBinary method and encode it as CBOR byte string.
//
// Boolean values encode as CBOR booleans (type 7).
//
// Positive integer values encode as CBOR positive integers (type 0).
//
// Negative integer values encode as CBOR negative integers (type 1).
//
// Floating point values encode as CBOR floating points (type 7).
//
// String values encode as CBOR text strings (type 3).
//
// []byte values encode as CBOR byte strings (type 2).
//
// Array and slice values encode as CBOR arrays (type 4).
//
// Map values encode as CBOR maps (type 5).
//
// Struct values encode as CBOR maps (type 5).  Each exported struct field
// becomes a pair with field name encoded as CBOR text string (type 3) and
// field value encoded based on its type.  See struct tag option "keyasint"
// to encode field name as CBOR integer (type 0 and 1).  Also see struct
// tag option "toarray" for special field "_" to encode struct values as
// CBOR array (type 4).
//
// Marshal supports format string stored under the "cbor" key in the struct
// field's tag.  CBOR format string can specify the name of the field,
// "omitempty", "omitzero" and "keyasint" options, and special case "-" for
// field omission. If "cbor" key is absent, Marshal uses "json" key.
// When using the "json" key, the "omitzero" option is honored when building
// with Go 1.24+ to match stdlib encoding/json behavior.
//
// Struct field name is treated as integer if it has "keyasint" option in
// its format string.  The format string must specify an integer as its
// field name.
//
// Special struct field "_" is used to specify struct level options, such as
// "toarray". "toarray" option enables Go struct to be encoded as CBOR array.
// "omitempty" and "omitzero" are disabled by "toarray" to ensure that the
// same number of elements are encoded every time.
//
// Anonymous struct fields are marshaled as if their exported fields
// were fields in the outer struct.  Marshal follows the same struct fields
// visibility rules used by JSON encoding package.
//
// time.Time values encode as text strings specified in RFC3339 or numerical
// representation of seconds since January 1, 1970 UTC depending on
// EncOptions.Time setting.  Also See EncOptions.TimeTag to encode
// time.Time as CBOR tag with tag number 0 or 1.
//
// big.Int values encode as CBOR integers (type 0 and 1) if values fit.
// Otherwise, big.Int values encode as CBOR bignums (tag 2 and 3).  See
// EncOptions.BigIntConvert to always encode big.Int values as CBOR
// bignums.
//
// Pointer values encode as the value pointed to.
//
// Interface values encode as the value stored in the interface.
//
// Nil slice/map/pointer/interface values encode as CBOR nulls (type 7).
//
// Values of other types cannot be encoded in CBOR.  Attempting
// to encode such a value causes Marshal to return an UnsupportedTypeError.
func Marshal(v any) ([]byte, error) {
	return defaultEncMode.Marshal(v)
}

// MarshalToBuffer encodes v into provided buffer (instead of using built-in buffer pool)
// and uses default encoding options.
//
// NOTE: Unlike Marshal, the buffer provided to MarshalToBuffer can contain
// partially encoded data if error is returned.
//
// See Marshal for more details.
func MarshalToBuffer(v any, buf *bytes.Buffer) error {
	return defaultEncMode.MarshalToBuffer(v, buf)
}

// Marshaler is the interface implemented by types that can marshal themselves
// into valid CBOR.
type Marshaler interface {
	MarshalCBOR() ([]byte, error)
}

// MarshalerError represents error from checking encoded CBOR data item
// returned from MarshalCBOR for well-formedness and some very limited tag validation.
type MarshalerError struct {
	typ reflect.Type
	err error
}

func (e *MarshalerError) Error() string {
	return "cbor: error calling MarshalCBOR for type " +
		e.typ.String() +
		": " + e.err.Error()
}

func (e *MarshalerError) Unwrap() error {
	return e.err
}

type TranscodeError struct {
	err                        error
	rtype                      reflect.Type
	sourceFormat, targetFormat string
}

func (e TranscodeError) Error() string {
	return "cbor: cannot transcode from " + e.sourceFormat + " to " + e.targetFormat + ": " + e.err.Error()
}

func (e TranscodeError) Unwrap() error {
	return e.err
}

// UnsupportedTypeError is returned by Marshal when attempting to encode value
// of an unsupported type.
type UnsupportedTypeError struct {
	Type reflect.Type
}

func (e *UnsupportedTypeError) Error() string {
	return "cbor: unsupported type: " + e.Type.String()
}

// UnsupportedValueError is returned by Marshal when attempting to encode an
// unsupported value.
type UnsupportedValueError struct {
	msg string
}

func (e *UnsupportedValueError) Error() string {
	return "cbor: unsupported value: " + e.msg
}

// SortMode identifies supported sorting order.
type SortMode int

const (
	// SortNone encodes map pairs and struct fields in an arbitrary order.
	SortNone SortMode = 0

	// SortLengthFirst causes map keys or struct fields to be sorted such that:
	//     - If two keys have different lengths, the shorter one sorts earlier;
	//     - If two keys have the same length, the one with the lower value in
	//       (byte-wise) lexical order sorts earlier.
	// It is used in "Canonical CBOR" encoding in RFC 7049 3.9.
	SortLengthFirst SortMode = 1

	// SortBytewiseLexical causes map keys or struct fields to be sorted in the
	// bytewise lexicographic order of their deterministic CBOR encodings.
	// It is used in "CTAP2 Canonical CBOR" and "Core Deterministic Encoding"
	// in RFC 7049bis.
	SortBytewiseLexical SortMode = 2

	// SortShuffle encodes map pairs and struct fields in a shuffled
	// order. This mode does not guarantee an unbiased permutation, but it
	// does guarantee that the runtime of the shuffle algorithm used will be
	// constant.
	SortFastShuffle SortMode = 3

	// SortCanonical is used in "Canonical CBOR" encoding in RFC 7049 3.9.
	SortCanonical SortMode = SortLengthFirst

	// SortCTAP2 is used in "CTAP2 Canonical CBOR".
	SortCTAP2 SortMode = SortBytewiseLexical

	// SortCoreDeterministic is used in "Core Deterministic Encoding" in RFC 7049bis.
	SortCoreDeterministic SortMode = SortBytewiseLexical

	maxSortMode SortMode = 4
)

func (sm SortMode) valid() bool {
	return sm >= 0 && sm < maxSortMode
}

// StringMode specifies how to encode Go string values.
type StringMode int

const (
	// StringToTextString encodes Go string to CBOR text string (major type 3).
	StringToTextString StringMode = iota

	// StringToByteString encodes Go string to CBOR byte string (major type 2).
	StringToByteString
)

func (st StringMode) cborType() (cborType, error) {
	switch st {
	case StringToTextString:
		return cborTypeTextString, nil

	case StringToByteString:
		return cborTypeByteString, nil
	}
	return 0, errors.New("cbor: invalid StringType " + strconv.Itoa(int(st)))
}

// ShortestFloatMode specifies which floating-point format should
// be used as the shortest possible format for CBOR encoding.
// It is not used for encoding Infinity and NaN values.
type ShortestFloatMode int

const (
	// ShortestFloatNone makes float values encode without any conversion.
	// This is the default for ShortestFloatMode in v1.
	// E.g. a float32 in Go will encode to CBOR float32.  And
	// a float64 in Go will encode to CBOR float64.
	ShortestFloatNone ShortestFloatMode = iota

	// ShortestFloat16 specifies float16 as the shortest form that preserves value.
	// E.g. if float64 can convert to float32 while preserving value, then
	// encoding will also try to convert float32 to float16.  So a float64 might
	// encode as CBOR float64, float32 or float16 depending on the value.
	ShortestFloat16

	maxShortestFloat
)

func (sfm ShortestFloatMode) valid() bool {
	return sfm >= 0 && sfm < maxShortestFloat
}

// NaNConvertMode specifies how to encode NaN and overrides ShortestFloatMode.
// ShortestFloatMode is not used for encoding Infinity and NaN values.
type NaNConvertMode int

const (
	// NaNConvert7e00 always encodes NaN to 0xf97e00 (CBOR float16 = 0x7e00).
	NaNConvert7e00 NaNConvertMode = iota

	// NaNConvertNone never modifies or converts NaN to other representations
	// (float64 NaN stays float64, etc. even if it can use float16 without losing
	// any bits).
	NaNConvertNone

	// NaNConvertPreserveSignal converts NaN to the smallest form that preserves
	// value (quiet bit + payload) as described in RFC 7049bis Draft 12.
	NaNConvertPreserveSignal

	// NaNConvertQuiet always forces quiet bit = 1 and shortest form that preserves
	// NaN payload.
	NaNConvertQuiet

	// NaNConvertReject returns UnsupportedValueError on attempts to encode a NaN value.
	NaNConvertReject

	maxNaNConvert
)

func (ncm NaNConvertMode) valid() bool {
	return ncm >= 0 && ncm < maxNaNConvert
}

// InfConvertMode specifies how to encode Infinity and overrides ShortestFloatMode.
// ShortestFloatMode is not used for encoding Infinity and NaN values.
type InfConvertMode int

const (
	// InfConvertFloat16 always converts Inf to lossless IEEE binary16 (float16).
	InfConvertFloat16 InfConvertMode = iota

	// InfConvertNone never converts (used by CTAP2 Canonical CBOR).
	InfConvertNone

	// InfConvertReject returns UnsupportedValueError on attempts to encode an infinite value.
	InfConvertReject

	maxInfConvert
)

func (icm InfConvertMode) valid() bool {
	return icm >= 0 && icm < maxInfConvert
}

// TimeMode specifies how to encode time.Time values in compliance with RFC 8949 (CBOR):
// - Section 3.4.1: Standard Date/Time String
// - Section 3.4.2: Epoch-Based Date/Time
// For more info, see:
// - https://www.rfc-editor.org/rfc/rfc8949.html
// NOTE: User applications that prefer to encode time with fractional seconds to an integer
// (instead of floating point or text string) can use a CBOR tag number not assigned by IANA:
//  1. Define a user-defined type in Go with just a time.Time or int64 as its data.
//  2. Implement the cbor.Marshaler and cbor.Unmarshaler interface for that user-defined type
//     to encode or decode the tagged data item with an enclosed integer content.
type TimeMode int

const (
	// TimeUnix causes time.Time to encode to a CBOR time (tag 1) with an integer content
	// representing seconds elapsed (with 1-second precision) since UNIX Epoch UTC.
	// The TimeUnix option is location independent and has a clear precision guarantee.
	TimeUnix TimeMode = iota

	// TimeUnixMicro causes time.Time to encode to a CBOR time (tag 1) with a floating point content
	// representing seconds elapsed (with up to 1-microsecond precision) since UNIX Epoch UTC.
	// NOTE: The floating point content is encoded to the shortest floating-point encoding that preserves
	// the 64-bit floating point value. I.e., the floating point encoding can be IEEE 764:
	// binary64, binary32, or binary16 depending on the content's value.
	TimeUnixMicro

	// TimeUnixDynamic causes time.Time to encode to a CBOR time (tag 1) with either an integer content or
	// a floating point content, depending on the content's value.  This option is equivalent to dynamically
	// choosing TimeUnix if time.Time doesn't have fractional seconds, and using TimeUnixMicro if time.Time
	// has fractional seconds.
	TimeUnixDynamic

	// TimeRFC3339 causes time.Time to encode to a CBOR time (tag 0) with a text string content
	// representing the time using 1-second precision in RFC3339 format.  If the time.Time has a
	// non-UTC timezone then a "localtime - UTC" numeric offset will be included as specified in RFC3339.
	// NOTE: User applications can avoid including the RFC3339 numeric offset by:
	// - providing a time.Time value set to UTC, or
	// - using the TimeUnix, TimeUnixMicro, or TimeUnixDynamic option instead of TimeRFC3339.
	TimeRFC3339

	// TimeRFC3339Nano causes time.Time to encode to a CBOR time (tag 0) with a text string content
	// representing the time using 1-nanosecond precision in RFC3339 format.  If the time.Time has a
	// non-UTC timezone then a "localtime - UTC" numeric offset will be included as specified in RFC3339.
	// NOTE: User applications can avoid including the RFC3339 numeric offset by:
	// - providing a time.Time value set to UTC, or
	// - using the TimeUnix, TimeUnixMicro, or TimeUnixDynamic option instead of TimeRFC3339Nano.
	TimeRFC3339Nano

	maxTimeMode
)

func (tm TimeMode) valid() bool {
	return tm >= 0 && tm < maxTimeMode
}

// BigIntConvertMode specifies how to encode big.Int values.
type BigIntConvertMode int

const (
	// BigIntConvertShortest makes big.Int encode to CBOR integer if value fits.
	// E.g. if big.Int value can be converted to CBOR integer while preserving
	// value, encoder will encode it to CBOR integer (major type 0 or 1).
	BigIntConvertShortest BigIntConvertMode = iota

	// BigIntConvertNone makes big.Int encode to CBOR bignum (tag 2 or 3) without
	// converting it to another CBOR type.
	BigIntConvertNone

	// BigIntConvertReject returns an UnsupportedTypeError instead of marshaling a big.Int.
	BigIntConvertReject

	maxBigIntConvert
)

func (bim BigIntConvertMode) valid() bool {
	return bim >= 0 && bim < maxBigIntConvert
}

// NilContainersMode specifies how to encode nil slices and maps.
type NilContainersMode int

const (
	// NilContainerAsNull encodes nil slices and maps as CBOR null.
	// This is the default.
	NilContainerAsNull NilContainersMode = iota

	// NilContainerAsEmpty encodes nil slices and maps as
	// empty container (CBOR bytestring, array, or map).
	NilContainerAsEmpty

	maxNilContainersMode
)

func (m NilContainersMode) valid() bool {
	return m >= 0 && m < maxNilContainersMode
}

// OmitEmptyMode specifies how to encode struct fields with omitempty tag.
// The default behavior omits if field value would encode as empty CBOR value.
type OmitEmptyMode int

const (
	// OmitEmptyCBORValue specifies that struct fields tagged with "omitempty"
	// should be omitted from encoding if the field would be encoded as an empty
	// CBOR value, such as CBOR false, 0, 0.0, nil, empty byte, empty string,
	// empty array, or empty map.
	OmitEmptyCBORValue OmitEmptyMode = iota

	// OmitEmptyGoValue specifies that struct fields tagged with "omitempty"
	// should be omitted from encoding if the field has an empty Go value,
	// defined as false, 0, 0.0, a nil pointer, a nil interface value, and
	// any empty array, slice, map, or string.
	// This behavior is the same as the current (aka v1) encoding/json package
	// included in Go.
	OmitEmptyGoValue

	maxOmitEmptyMode
)

func (om OmitEmptyMode) valid() bool {
	return om >= 0 && om < maxOmitEmptyMode
}

// FieldNameMode specifies the CBOR type to use when encoding struct field names.
type FieldNameMode int

const (
	// FieldNameToTextString encodes struct fields to CBOR text string (major type 3).
	FieldNameToTextString FieldNameMode = iota

	// FieldNameToTextString encodes struct fields to CBOR byte string (major type 2).
	FieldNameToByteString

	maxFieldNameMode
)

func (fnm FieldNameMode) valid() bool {
	return fnm >= 0 && fnm < maxFieldNameMode
}

// ByteSliceLaterFormatMode specifies which later format conversion hint (CBOR tag 21-23)
// to include (if any) when encoding Go byte slice to CBOR byte string. The encoder will
// always encode unmodified bytes from the byte slice and just wrap it within
// CBOR tag 21, 22, or 23 if specified.
// See "Expected Later Encoding for CBOR-to-JSON Converters" in RFC 8949 Section 3.4.5.2.
type ByteSliceLaterFormatMode int

const (
	// ByteSliceLaterFormatNone encodes unmodified bytes from Go byte slice to CBOR byte string (major type 2)
	// without adding CBOR tag 21, 22, or 23.
	ByteSliceLaterFormatNone ByteSliceLaterFormatMode = iota

	// ByteSliceLaterFormatBase64URL encodes unmodified bytes from Go byte slice to CBOR byte string (major type 2)
	// inside CBOR tag 21 (expected later conversion to base64url encoding, see RFC 8949 Section 3.4.5.2).
	ByteSliceLaterFormatBase64URL

	// ByteSliceLaterFormatBase64 encodes unmodified bytes from Go byte slice to CBOR byte string (major type 2)
	// inside CBOR tag 22 (expected later conversion to base64 encoding, see RFC 8949 Section 3.4.5.2).
	ByteSliceLaterFormatBase64

	// ByteSliceLaterFormatBase16 encodes unmodified bytes from Go byte slice to CBOR byte string (major type 2)
	// inside CBOR tag 23 (expected later conversion to base16 encoding, see RFC 8949 Section 3.4.5.2).
	ByteSliceLaterFormatBase16
)

func (bsefm ByteSliceLaterFormatMode) encodingTag() (uint64, error) {
	switch bsefm {
	case ByteSliceLaterFormatNone:
		return 0, nil

	case ByteSliceLaterFormatBase64URL:
		return tagNumExpectedLaterEncodingBase64URL, nil

	case ByteSliceLaterFormatBase64:
		return tagNumExpectedLaterEncodingBase64, nil

	case ByteSliceLaterFormatBase16:
		return tagNumExpectedLaterEncodingBase16, nil
	}
	return 0, errors.New("cbor: invalid ByteSliceLaterFormat " + strconv.Itoa(int(bsefm)))
}

// ByteArrayMode specifies how to encode byte arrays.
type ByteArrayMode int

const (
	// ByteArrayToByteSlice encodes byte arrays the same way that a byte slice with identical
	// length and contents is encoded.
	ByteArrayToByteSlice ByteArrayMode = iota

	// ByteArrayToArray encodes byte arrays to the CBOR array type with one unsigned integer
	// item for each byte in the array.
	ByteArrayToArray

	maxByteArrayMode
)

func (bam ByteArrayMode) valid() bool {
	return bam >= 0 && bam < maxByteArrayMode
}

// BinaryMarshalerMode specifies how to encode types that implement encoding.BinaryMarshaler.
type BinaryMarshalerMode int

const (
	// BinaryMarshalerByteString encodes the output of MarshalBinary to a CBOR byte string.
	BinaryMarshalerByteString BinaryMarshalerMode = iota

	// BinaryMarshalerNone does not recognize BinaryMarshaler implementations during encode.
	BinaryMarshalerNone

	maxBinaryMarshalerMode
)

func (bmm BinaryMarshalerMode) valid() bool {
	return bmm >= 0 && bmm < maxBinaryMarshalerMode
}

// TextMarshalerMode specifies how to encode types that implement encoding.TextMarshaler.
type TextMarshalerMode int

const (
	// TextMarshalerNone does not recognize TextMarshaler implementations during encode.
	// This is the default behavior.
	TextMarshalerNone TextMarshalerMode = iota

	// TextMarshalerTextString encodes the output of MarshalText to a CBOR text string.
	TextMarshalerTextString

	maxTextMarshalerMode
)

func (tmm TextMarshalerMode) valid() bool {
	return tmm >= 0 && tmm < maxTextMarshalerMode
}

// EncOptions specifies encoding options.
type EncOptions struct {
	// Sort specifies sorting order.
	Sort SortMode

	// ShortestFloat specifies the shortest floating-point encoding that preserves
	// the value being encoded.
	ShortestFloat ShortestFloatMode

	// NaNConvert specifies how to encode NaN and it overrides ShortestFloatMode.
	NaNConvert NaNConvertMode

	// InfConvert specifies how to encode Inf and it overrides ShortestFloatMode.
	InfConvert InfConvertMode

	// BigIntConvert specifies how to encode big.Int values.
	BigIntConvert BigIntConvertMode

	// Time specifies how to encode time.Time.
	Time TimeMode

	// TimeTag allows time.Time to be encoded with a tag number.
	// RFC3339 format gets tag number 0, and numeric epoch time tag number 1.
	TimeTag EncTagMode

	// IndefLength specifies whether to allow indefinite length CBOR items.
	IndefLength IndefLengthMode

	// NilContainers specifies how to encode nil slices and maps.
	NilContainers NilContainersMode

	// TagsMd specifies whether to allow CBOR tags (major type 6).
	TagsMd TagsMode

	// OmitEmptyMode specifies how to encode struct fields with omitempty tag.
	OmitEmpty OmitEmptyMode

	// String specifies which CBOR type to use when encoding Go strings.
	// - CBOR text string (major type 3) is default
	// - CBOR byte string (major type 2)
	String StringMode

	// FieldName specifies the CBOR type to use when encoding struct field names.
	FieldName FieldNameMode

	// ByteSliceLaterFormat specifies which later format conversion hint (CBOR tag 21-23)
	// to include (if any) when encoding Go byte slice to CBOR byte string. The encoder will
	// always encode unmodified bytes from the byte slice and just wrap it within
	// CBOR tag 21, 22, or 23 if specified.
	// See "Expected Later Encoding for CBOR-to-JSON Converters" in RFC 8949 Section 3.4.5.2.
	ByteSliceLaterFormat ByteSliceLaterFormatMode

	// ByteArray specifies how to encode byte arrays.
	ByteArray ByteArrayMode

	// BinaryMarshaler specifies how to encode types that implement encoding.BinaryMarshaler.
	BinaryMarshaler BinaryMarshalerMode

	// TextMarshaler specifies how to encode types that implement encoding.TextMarshaler.
	TextMarshaler TextMarshalerMode

	// JSONMarshalerTranscoder sets the transcoding scheme used to marshal types that implement
	// json.Marshaler but do not also implement cbor.Marshaler. If nil, encoding behavior is not
	// influenced by whether or not a type implements json.Marshaler.
	JSONMarshalerTranscoder Transcoder
}

// CanonicalEncOptions returns EncOptions for "Canonical CBOR" encoding,
// defined in RFC 7049 Section 3.9 with the following rules:
//
//  1. "Integers must be as small as possible."
//  2. "The expression of lengths in major types 2 through 5 must be as short as possible."
//  3. The keys in every map must be sorted in length-first sorting order.
//     See SortLengthFirst for details.
//  4. "Indefinite-length items must be made into definite-length items."
//  5. "If a protocol allows for IEEE floats, then additional canonicalization rules might
//     need to be added.  One example rule might be to have all floats start as a 64-bit
//     float, then do a test conversion to a 32-bit float; if the result is the same numeric
//     value, use the shorter value and repeat the process with a test conversion to a
//     16-bit float.  (This rule selects 16-bit float for positive and negative Infinity
//     as well.)  Also, there are many representations for NaN.  If NaN is an allowed value,
//     it must always be represented as 0xf97e00."
func CanonicalEncOptions() EncOptions {
	return EncOptions{
		Sort:          SortCanonical,
		ShortestFloat: ShortestFloat16,
		NaNConvert:    NaNConvert7e00,
		InfConvert:    InfConvertFloat16,
		IndefLength:   IndefLengthForbidden,
	}
}

// CTAP2EncOptions returns EncOptions for "CTAP2 Canonical CBOR" encoding,
// defined in CTAP specification, with the following rules:
//
//  1. "Integers must be encoded as small as possible."
//  2. "The representations of any floating-point values are not changed."
//  3. "The expression of lengths in major types 2 through 5 must be as short as possible."
//  4. "Indefinite-length items must be made into definite-length items.""
//  5. The keys in every map must be sorted in bytewise lexicographic order.
//     See SortBytewiseLexical for details.
//  6. "Tags as defined in Section 2.4 in [RFC7049] MUST NOT be present."
func CTAP2EncOptions() EncOptions {
	return EncOptions{
		Sort:          SortCTAP2,
		ShortestFloat: ShortestFloatNone,
		NaNConvert:    NaNConvertNone,
		InfConvert:    InfConvertNone,
		IndefLength:   IndefLengthForbidden,
		TagsMd:        TagsForbidden,
	}
}

// CoreDetEncOptions returns EncOptions for "Core Deterministic" encoding,
// defined in RFC 7049bis with the following rules:
//
//  1. "Preferred serialization MUST be used. In particular, this means that arguments
//     (see Section 3) for integers, lengths in major types 2 through 5, and tags MUST
//     be as short as possible"
//     "Floating point values also MUST use the shortest form that preserves the value"
//  2. "Indefinite-length items MUST NOT appear."
//  3. "The keys in every map MUST be sorted in the bytewise lexicographic order of
//     their deterministic encodings."
func CoreDetEncOptions() EncOptions {
	return EncOptions{
		Sort:          SortCoreDeterministic,
		ShortestFloat: ShortestFloat16,
		NaNConvert:    NaNConvert7e00,
		InfConvert:    InfConvertFloat16,
		IndefLength:   IndefLengthForbidden,
	}
}

// PreferredUnsortedEncOptions returns EncOptions for "Preferred Serialization" encoding,
// defined in RFC 7049bis with the following rules:
//
//  1. "The preferred serialization always uses the shortest form of representing the argument
//     (Section 3);"
//  2. "it also uses the shortest floating-point encoding that preserves the value being
//     encoded (see Section 5.5)."
//     "The preferred encoding for a floating-point value is the shortest floating-point encoding
//     that preserves its value, e.g., 0xf94580 for the number 5.5, and 0xfa45ad9c00 for the
//     number 5555.5, unless the CBOR-based protocol specifically excludes the use of the shorter
//     floating-point encodings. For NaN values, a shorter encoding is preferred if zero-padding
//     the shorter significand towards the right reconstitutes the original NaN value (for many
//     applications, the single NaN encoding 0xf97e00 will suffice)."
//  3. "Definite length encoding is preferred whenever the length is known at the time the
//     serialization of the item starts."
func PreferredUnsortedEncOptions() EncOptions {
	return EncOptions{
		Sort:          SortNone,
		ShortestFloat: ShortestFloat16,
		NaNConvert:    NaNConvert7e00,
		InfConvert:    InfConvertFloat16,
	}
}

// EncMode returns EncMode with immutable options and no tags (safe for concurrency).
func (opts EncOptions) EncMode() (EncMode, error) { //nolint:gocritic // ignore hugeParam
	return opts.encMode()
}

// UserBufferEncMode returns UserBufferEncMode with immutable options and no tags (safe for concurrency).
func (opts EncOptions) UserBufferEncMode() (UserBufferEncMode, error) { //nolint:gocritic // ignore hugeParam
	return opts.encMode()
}

// EncModeWithTags returns EncMode with options and tags that are both immutable (safe for concurrency).
func (opts EncOptions) EncModeWithTags(tags TagSet) (EncMode, error) { //nolint:gocritic // ignore hugeParam
	return opts.UserBufferEncModeWithTags(tags)
}

// UserBufferEncModeWithTags returns UserBufferEncMode with options and tags that are both immutable (safe for concurrency).
func (opts EncOptions) UserBufferEncModeWithTags(tags TagSet) (UserBufferEncMode, error) { //nolint:gocritic // ignore hugeParam
	if opts.TagsMd == TagsForbidden {
		return nil, errors.New("cbor: cannot create EncMode with TagSet when TagsMd is TagsForbidden")
	}
	if tags == nil {
		return nil, errors.New("cbor: cannot create EncMode with nil value as TagSet")
	}
	em, err := opts.encMode()
	if err != nil {
		return nil, err
	}
	// Copy tags
	ts := tagSet(make(map[reflect.Type]*tagItem))
	syncTags := tags.(*syncTagSet)
	syncTags.RLock()
	for contentType, tag := range syncTags.t {
		if tag.opts.EncTag != EncTagNone {
			ts[contentType] = tag
		}
	}
	syncTags.RUnlock()
	if len(ts) > 0 {
		em.tags = ts
	}
	return em, nil
}

// EncModeWithSharedTags returns EncMode with immutable options and mutable shared tags (safe for concurrency).
func (opts EncOptions) EncModeWithSharedTags(tags TagSet) (EncMode, error) { //nolint:gocritic // ignore hugeParam
	return opts.UserBufferEncModeWithSharedTags(tags)
}

// UserBufferEncModeWithSharedTags returns UserBufferEncMode with immutable options and mutable shared tags (safe for concurrency).
func (opts EncOptions) UserBufferEncModeWithSharedTags(tags TagSet) (UserBufferEncMode, error) { //nolint:gocritic // ignore hugeParam
	if opts.TagsMd == TagsForbidden {
		return nil, errors.New("cbor: cannot create EncMode with TagSet when TagsMd is TagsForbidden")
	}
	if tags == nil {
		return nil, errors.New("cbor: cannot create EncMode with nil value as TagSet")
	}
	em, err := opts.encMode()
	if err != nil {
		return nil, err
	}
	em.tags = tags
	return em, nil
}

func (opts EncOptions) encMode() (*encMode, error) { //nolint:gocritic // ignore hugeParam
	if !opts.Sort.valid() {
		return nil, errors.New("cbor: invalid SortMode " + strconv.Itoa(int(opts.Sort)))
	}
	if !opts.ShortestFloat.valid() {
		return nil, errors.New("cbor: invalid ShortestFloatMode " + strconv.Itoa(int(opts.ShortestFloat)))
	}
	if !opts.NaNConvert.valid() {
		return nil, errors.New("cbor: invalid NaNConvertMode " + strconv.Itoa(int(opts.NaNConvert)))
	}
	if !opts.InfConvert.valid() {
		return nil, errors.New("cbor: invalid InfConvertMode " + strconv.Itoa(int(opts.InfConvert)))
	}
	if !opts.BigIntConvert.valid() {
		return nil, errors.New("cbor: invalid BigIntConvertMode " + strconv.Itoa(int(opts.BigIntConvert)))
	}
	if !opts.Time.valid() {
		return nil, errors.New("cbor: invalid TimeMode " + strconv.Itoa(int(opts.Time)))
	}
	if !opts.TimeTag.valid() {
		return nil, errors.New("cbor: invalid TimeTag " + strconv.Itoa(int(opts.TimeTag)))
	}
	if !opts.IndefLength.valid() {
		return nil, errors.New("cbor: invalid IndefLength " + strconv.Itoa(int(opts.IndefLength)))
	}
	if !opts.NilContainers.valid() {
		return nil, errors.New("cbor: invalid NilContainers " + strconv.Itoa(int(opts.NilContainers)))
	}
	if !opts.TagsMd.valid() {
		return nil, errors.New("cbor: invalid TagsMd " + strconv.Itoa(int(opts.TagsMd)))
	}
	if opts.TagsMd == TagsForbidden && opts.TimeTag == EncTagRequired {
		return nil, errors.New("cbor: cannot set TagsMd to TagsForbidden when TimeTag is EncTagRequired")
	}
	if !opts.OmitEmpty.valid() {
		return nil, errors.New("cbor: invalid OmitEmpty " + strconv.Itoa(int(opts.OmitEmpty)))
	}
	stringMajorType, err := opts.String.cborType()
	if err != nil {
		return nil, err
	}
	if !opts.FieldName.valid() {
		return nil, errors.New("cbor: invalid FieldName " + strconv.Itoa(int(opts.FieldName)))
	}
	byteSliceLaterEncodingTag, err := opts.ByteSliceLaterFormat.encodingTag()
	if err != nil {
		return nil, err
	}
	if !opts.ByteArray.valid() {
		return nil, errors.New("cbor: invalid ByteArray " + strconv.Itoa(int(opts.ByteArray)))
	}
	if !opts.BinaryMarshaler.valid() {
		return nil, errors.New("cbor: invalid BinaryMarshaler " + strconv.Itoa(int(opts.BinaryMarshaler)))
	}
	if !opts.TextMarshaler.valid() {
		return nil, errors.New("cbor: invalid TextMarshaler " + strconv.Itoa(int(opts.TextMarshaler)))
	}
	em := encMode{
		sort:                      opts.Sort,
		shortestFloat:             opts.ShortestFloat,
		nanConvert:                opts.NaNConvert,
		infConvert:                opts.InfConvert,
		bigIntConvert:             opts.BigIntConvert,
		time:                      opts.Time,
		timeTag:                   opts.TimeTag,
		indefLength:               opts.IndefLength,
		nilContainers:             opts.NilContainers,
		tagsMd:                    opts.TagsMd,
		omitEmpty:                 opts.OmitEmpty,
		stringType:                opts.String,
		stringMajorType:           stringMajorType,
		fieldName:                 opts.FieldName,
		byteSliceLaterFormat:      opts.ByteSliceLaterFormat,
		byteSliceLaterEncodingTag: byteSliceLaterEncodingTag,
		byteArray:                 opts.ByteArray,
		binaryMarshaler:           opts.BinaryMarshaler,
		textMarshaler:             opts.TextMarshaler,
		jsonMarshalerTranscoder:   opts.JSONMarshalerTranscoder,
	}
	return &em, nil
}

// EncMode is the main interface for CBOR encoding.
type EncMode interface {
	Marshal(v any) ([]byte, error)
	NewEncoder(w io.Writer) *Encoder
	EncOptions() EncOptions
}

// UserBufferEncMode is an interface for CBOR encoding, which extends EncMode by
// adding MarshalToBuffer to support user specified buffer rather than encoding
// into the built-in buffer pool.
type UserBufferEncMode interface {
	EncMode
	MarshalToBuffer(v any, buf *bytes.Buffer) error

	// This private method is to prevent users implementing
	// this interface and so future additions to it will
	// not be breaking changes.
	// See https://go.dev/blog/module-compatibility
	unexport()
}

type encMode struct {
	tags                      tagProvider
	sort                      SortMode
	shortestFloat             ShortestFloatMode
	nanConvert                NaNConvertMode
	infConvert                InfConvertMode
	bigIntConvert             BigIntConvertMode
	time                      TimeMode
	timeTag                   EncTagMode
	indefLength               IndefLengthMode
	nilContainers             NilContainersMode
	tagsMd                    TagsMode
	omitEmpty                 OmitEmptyMode
	stringType                StringMode
	stringMajorType           cborType
	fieldName                 FieldNameMode
	byteSliceLaterFormat      ByteSliceLaterFormatMode
	byteSliceLaterEncodingTag uint64
	byteArray                 ByteArrayMode
	binaryMarshaler           BinaryMarshalerMode
	textMarshaler             TextMarshalerMode
	jsonMarshalerTranscoder   Transcoder
}

var defaultEncMode, _ = EncOptions{}.encMode()

// These four decoding modes are used by getMarshalerDecMode.
// maxNestedLevels, maxArrayElements, and maxMapPairs are
// set to max allowed limits to avoid rejecting Marshaler
// output that would have been the allowable output of a
// non-Marshaler object that exceeds default limits.
var (
	marshalerForbidIndefLengthForbidTagsDecMode = decMode{
		maxNestedLevels:  maxMaxNestedLevels,
		maxArrayElements: maxMaxArrayElements,
		maxMapPairs:      maxMaxMapPairs,
		indefLength:      IndefLengthForbidden,
		tagsMd:           TagsForbidden,
	}

	marshalerAllowIndefLengthForbidTagsDecMode = decMode{
		maxNestedLevels:  maxMaxNestedLevels,
		maxArrayElements: maxMaxArrayElements,
		maxMapPairs:      maxMaxMapPairs,
		indefLength:      IndefLengthAllowed,
		tagsMd:           TagsForbidden,
	}

	marshalerForbidIndefLengthAllowTagsDecMode = decMode{
		maxNestedLevels:  maxMaxNestedLevels,
		maxArrayElements: maxMaxArrayElements,
		maxMapPairs:      maxMaxMapPairs,
		indefLength:      IndefLengthForbidden,
		tagsMd:           TagsAllowed,
	}

	marshalerAllowIndefLengthAllowTagsDecMode = decMode{
		maxNestedLevels:  maxMaxNestedLevels,
		maxArrayElements: maxMaxArrayElements,
		maxMapPairs:      maxMaxMapPairs,
		indefLength:      IndefLengthAllowed,
		tagsMd:           TagsAllowed,
	}
)

// getMarshalerDecMode returns one of four existing decoding modes
// which can be reused (safe for parallel use) for the purpose of
// checking if data returned by Marshaler is well-formed.
func getMarshalerDecMode(indefLength IndefLengthMode, tagsMd TagsMode) *decMode {
	switch {
	case indefLength == IndefLengthAllowed && tagsMd == TagsAllowed:
		return &marshalerAllowIndefLengthAllowTagsDecMode

	case indefLength == IndefLengthAllowed && tagsMd == TagsForbidden:
		return &marshalerAllowIndefLengthForbidTagsDecMode

	case indefLength == IndefLengthForbidden && tagsMd == TagsAllowed:
		return &marshalerForbidIndefLengthAllowTagsDecMode

	case indefLength == IndefLengthForbidden && tagsMd == TagsForbidden:
		return &marshalerForbidIndefLengthForbidTagsDecMode

	default:
		// This should never happen, unless we add new options to
		// IndefLengthMode or TagsMode without updating this function.
		return &decMode{
			maxNestedLevels:  maxMaxNestedLevels,
			maxArrayElements: maxMaxArrayElements,
			maxMapPairs:      maxMaxMapPairs,
			indefLength:      indefLength,
			tagsMd:           tagsMd,
		}
	}
}

// EncOptions returns user specified options used to create this EncMode.
func (em *encMode) EncOptions() EncOptions {
	return EncOptions{
		Sort:                    em.sort,
		ShortestFloat:           em.shortestFloat,
		NaNConvert:              em.nanConvert,
		InfConvert:              em.infConvert,
		BigIntConvert:           em.bigIntConvert,
		Time:                    em.time,
		TimeTag:                 em.timeTag,
		IndefLength:             em.indefLength,
		NilContainers:           em.nilContainers,
		TagsMd:                  em.tagsMd,
		OmitEmpty:               em.omitEmpty,
		String:                  em.stringType,
		FieldName:               em.fieldName,
		ByteSliceLaterFormat:    em.byteSliceLaterFormat,
		ByteArray:               em.byteArray,
		BinaryMarshaler:         em.binaryMarshaler,
		TextMarshaler:           em.textMarshaler,
		JSONMarshalerTranscoder: em.jsonMarshalerTranscoder,
	}
}

func (em *encMode) unexport() {}

func (em *encMode) encTagBytes(t reflect.Type) []byte {
	if em.tags != nil {
		if tagItem := em.tags.getTagItemFromType(t); tagItem != nil {
			return tagItem.cborTagNum
		}
	}
	return nil
}

// Marshal returns the CBOR encoding of v using em encoding mode.
//
// See the documentation for Marshal for details.
func (em *encMode) Marshal(v any) ([]byte, error) {
	e := getEncodeBuffer()

	if err := encode(e, em, reflect.ValueOf(v)); err != nil {
		putEncodeBuffer(e)
		return nil, err
	}

	buf := make([]byte, e.Len())
	copy(buf, e.Bytes())

	putEncodeBuffer(e)
	return buf, nil
}

// MarshalToBuffer encodes v into provided buffer (instead of using built-in buffer pool)
// and uses em encoding mode.
//
// NOTE: Unlike Marshal, the buffer provided to MarshalToBuffer can contain
// partially encoded data if error is returned.
//
// See Marshal for more details.
func (em *encMode) MarshalToBuffer(v any, buf *bytes.Buffer) error {
	if buf == nil {
		return fmt.Errorf("cbor: encoding buffer provided by user is nil")
	}
	return encode(buf, em, reflect.ValueOf(v))
}

// NewEncoder returns a new encoder that writes to w using em EncMode.
func (em *encMode) NewEncoder(w io.Writer) *Encoder {
	return &Encoder{w: w, em: em}
}

// encodeBufferPool caches unused bytes.Buffer objects for later reuse.
var encodeBufferPool = sync.Pool{
	New: func() any {
		e := new(bytes.Buffer)
		e.Grow(32) // TODO: make this configurable
		return e
	},
}

func getEncodeBuffer() *bytes.Buffer {
	return encodeBufferPool.Get().(*bytes.Buffer)
}

func putEncodeBuffer(e *bytes.Buffer) {
	e.Reset()
	encodeBufferPool.Put(e)
}

type encodeFunc func(e *bytes.Buffer, em *encMode, v reflect.Value) error
type isEmptyFunc func(em *encMode, v reflect.Value) (empty bool, err error)
type isZeroFunc func(v reflect.Value) (zero bool, err error)

func encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if !v.IsValid() {
		// v is zero value
		e.Write(cborNil)
		return nil
	}
	vt := v.Type()
	f, _, _ := getEncodeFunc(vt)
	if f == nil {
		return &UnsupportedTypeError{vt}
	}

	return f(e, em, v)
}

func encodeBool(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	b := cborFalse
	if v.Bool() {
		b = cborTrue
	}
	e.Write(b)
	return nil
}

func encodeInt(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	i := v.Int()
	if i >= 0 {
		encodeHead(e, byte(cborTypePositiveInt), uint64(i))
		return nil
	}
	i = i*(-1) - 1
	encodeHead(e, byte(cborTypeNegativeInt), uint64(i))
	return nil
}

func encodeUint(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	encodeHead(e, byte(cborTypePositiveInt), v.Uint())
	return nil
}

func encodeFloat(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	f64 := v.Float()
	if math.IsNaN(f64) {
		return encodeNaN(e, em, v)
	}
	if math.IsInf(f64, 0) {
		return encodeInf(e, em, v)
	}
	fopt := em.shortestFloat
	if v.Kind() == reflect.Float64 && (fopt == ShortestFloatNone || cannotFitFloat32(f64)) {
		// Encode float64
		// Don't use encodeFloat64() because it cannot be inlined.
		const argumentSize = 8
		const headSize = 1 + argumentSize
		var scratch [headSize]byte
		scratch[0] = byte(cborTypePrimitives) | byte(additionalInformationAsFloat64)
		binary.BigEndian.PutUint64(scratch[1:], math.Float64bits(f64))
		e.Write(scratch[:])
		return nil
	}

	f32 := float32(f64)
	if fopt == ShortestFloat16 {
		var f16 float16.Float16
		p := float16.PrecisionFromfloat32(f32)
		if p == float16.PrecisionExact {
			// Roundtrip float32->float16->float32 test isn't needed.
			f16 = float16.Fromfloat32(f32)
		} else if p == float16.PrecisionUnknown {
			// Try roundtrip float32->float16->float32 to determine if float32 can fit into float16.
			f16 = float16.Fromfloat32(f32)
			if f16.Float32() == f32 {
				p = float16.PrecisionExact
			}
		}
		if p == float16.PrecisionExact {
			// Encode float16
			// Don't use encodeFloat16() because it cannot be inlined.
			const argumentSize = 2
			const headSize = 1 + argumentSize
			var scratch [headSize]byte
			scratch[0] = byte(cborTypePrimitives) | additionalInformationAsFloat16
			binary.BigEndian.PutUint16(scratch[1:], uint16(f16))
			e.Write(scratch[:])
			return nil
		}
	}

	// Encode float32
	// Don't use encodeFloat32() because it cannot be inlined.
	const argumentSize = 4
	const headSize = 1 + argumentSize
	var scratch [headSize]byte
	scratch[0] = byte(cborTypePrimitives) | additionalInformationAsFloat32
	binary.BigEndian.PutUint32(scratch[1:], math.Float32bits(f32))
	e.Write(scratch[:])
	return nil
}

func encodeInf(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	f64 := v.Float()
	switch em.infConvert {
	case InfConvertReject:
		return &UnsupportedValueError{msg: "floating-point infinity"}

	case InfConvertFloat16:
		if f64 > 0 {
			e.Write(cborPositiveInfinity)
		} else {
			e.Write(cborNegativeInfinity)
		}
		return nil
	}
	if v.Kind() == reflect.Float64 {
		return encodeFloat64(e, f64)
	}
	return encodeFloat32(e, float32(f64))
}

func encodeNaN(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	switch em.nanConvert {
	case NaNConvert7e00:
		e.Write(cborNaN)
		return nil

	case NaNConvertNone:
		if v.Kind() == reflect.Float64 {
			return encodeFloat64(e, v.Float())
		}
		f32 := float32NaNFromReflectValue(v)
		return encodeFloat32(e, f32)

	case NaNConvertReject:
		return &UnsupportedValueError{msg: "floating-point NaN"}

	default: // NaNConvertPreserveSignal, NaNConvertQuiet
		if v.Kind() == reflect.Float64 {
			f64 := v.Float()
			f64bits := math.Float64bits(f64)
			if em.nanConvert == NaNConvertQuiet && f64bits&(1<<51) == 0 {
				f64bits |= 1 << 51 // Set quiet bit = 1
				f64 = math.Float64frombits(f64bits)
			}
			// The lower 29 bits are dropped when converting from float64 to float32.
			if f64bits&0x1fffffff != 0 {
				// Encode NaN as float64 because dropped coef bits from float64 to float32 are not all 0s.
				return encodeFloat64(e, f64)
			}
			// Create float32 from float64 manually because float32(f64) always turns on NaN's quiet bits.
			sign := uint32(f64bits>>32) & (1 << 31)
			exp := uint32(0x7f800000)
			coef := uint32((f64bits & 0xfffffffffffff) >> 29)
			f32bits := sign | exp | coef
			f32 := math.Float32frombits(f32bits)
			// The lower 13 bits are dropped when converting from float32 to float16.
			if f32bits&0x1fff != 0 {
				// Encode NaN as float32 because dropped coef bits from float32 to float16 are not all 0s.
				return encodeFloat32(e, f32)
			}
			// Encode NaN as float16
			f16, _ := float16.FromNaN32ps(f32) // Ignore err because it only returns error when f32 is not a NaN.
			return encodeFloat16(e, f16)
		}

		f32 := float32NaNFromReflectValue(v)
		f32bits := math.Float32bits(f32)
		if em.nanConvert == NaNConvertQuiet && f32bits&(1<<22) == 0 {
			f32bits |= 1 << 22 // Set quiet bit = 1
			f32 = math.Float32frombits(f32bits)
		}
		// The lower 13 bits are dropped coef bits when converting from float32 to float16.
		if f32bits&0x1fff != 0 {
			// Encode NaN as float32 because dropped coef bits from float32 to float16 are not all 0s.
			return encodeFloat32(e, f32)
		}
		f16, _ := float16.FromNaN32ps(f32) // Ignore err because it only returns error when f32 is not a NaN.
		return encodeFloat16(e, f16)
	}
}

func encodeFloat16(e *bytes.Buffer, f16 float16.Float16) error {
	const argumentSize = 2
	const headSize = 1 + argumentSize
	var scratch [headSize]byte
	scratch[0] = byte(cborTypePrimitives) | additionalInformationAsFloat16
	binary.BigEndian.PutUint16(scratch[1:], uint16(f16))
	e.Write(scratch[:])
	return nil
}

func encodeFloat32(e *bytes.Buffer, f32 float32) error {
	const argumentSize = 4
	const headSize = 1 + argumentSize
	var scratch [headSize]byte
	scratch[0] = byte(cborTypePrimitives) | additionalInformationAsFloat32
	binary.BigEndian.PutUint32(scratch[1:], math.Float32bits(f32))
	e.Write(scratch[:])
	return nil
}

func encodeFloat64(e *bytes.Buffer, f64 float64) error {
	const argumentSize = 8
	const headSize = 1 + argumentSize
	var scratch [headSize]byte
	scratch[0] = byte(cborTypePrimitives) | additionalInformationAsFloat64
	binary.BigEndian.PutUint64(scratch[1:], math.Float64bits(f64))
	e.Write(scratch[:])
	return nil
}

func encodeByteString(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	vk := v.Kind()
	if vk == reflect.Slice && v.IsNil() && em.nilContainers == NilContainerAsNull {
		e.Write(cborNil)
		return nil
	}
	if vk == reflect.Slice && v.Type().Elem().Kind() == reflect.Uint8 && em.byteSliceLaterEncodingTag != 0 {
		encodeHead(e, byte(cborTypeTag), em.byteSliceLaterEncodingTag)
	}
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	slen := v.Len()
	if slen == 0 {
		return e.WriteByte(byte(cborTypeByteString))
	}
	encodeHead(e, byte(cborTypeByteString), uint64(slen))
	if vk == reflect.Array {
		for i := 0; i < slen; i++ {
			e.WriteByte(byte(v.Index(i).Uint()))
		}
		return nil
	}
	e.Write(v.Bytes())
	return nil
}

func encodeString(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	s := v.String()
	encodeHead(e, byte(em.stringMajorType), uint64(len(s)))
	e.WriteString(s)
	return nil
}

type arrayEncodeFunc struct {
	f encodeFunc
}

func (ae arrayEncodeFunc) encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.byteArray == ByteArrayToByteSlice && v.Type().Elem().Kind() == reflect.Uint8 {
		return encodeByteString(e, em, v)
	}
	if v.Kind() == reflect.Slice && v.IsNil() && em.nilContainers == NilContainerAsNull {
		e.Write(cborNil)
		return nil
	}
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	alen := v.Len()
	if alen == 0 {
		return e.WriteByte(byte(cborTypeArray))
	}
	encodeHead(e, byte(cborTypeArray), uint64(alen))
	for i := 0; i < alen; i++ {
		if err := ae.f(e, em, v.Index(i)); err != nil {
			return err
		}
	}
	return nil
}

// encodeKeyValueFunc encodes key/value pairs in map (v).
// If kvs is provided (having the same length as v), length of encoded key and value are stored in kvs.
// kvs is used for canonical encoding of map.
type encodeKeyValueFunc func(e *bytes.Buffer, em *encMode, v reflect.Value, kvs []keyValue) error

type mapEncodeFunc struct {
	e encodeKeyValueFunc
}

func (me mapEncodeFunc) encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if v.IsNil() && em.nilContainers == NilContainerAsNull {
		e.Write(cborNil)
		return nil
	}
	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}
	mlen := v.Len()
	if mlen == 0 {
		return e.WriteByte(byte(cborTypeMap))
	}

	encodeHead(e, byte(cborTypeMap), uint64(mlen))
	if em.sort == SortNone || em.sort == SortFastShuffle || mlen <= 1 {
		return me.e(e, em, v, nil)
	}

	kvsp := getKeyValues(v.Len()) // for sorting keys
	defer putKeyValues(kvsp)
	kvs := *kvsp

	kvBeginOffset := e.Len()
	if err := me.e(e, em, v, kvs); err != nil {
		return err
	}
	kvTotalLen := e.Len() - kvBeginOffset

	// Use the capacity at the tail of the encode buffer as a staging area to rearrange the
	// encoded pairs into sorted order.
	e.Grow(kvTotalLen)
	tmp := e.Bytes()[e.Len() : e.Len()+kvTotalLen] // Can use e.AvailableBuffer() in Go 1.21+.
	dst := e.Bytes()[kvBeginOffset:]

	if em.sort == SortBytewiseLexical {
		sort.Sort(&bytewiseKeyValueSorter{kvs: kvs, data: dst})
	} else {
		sort.Sort(&lengthFirstKeyValueSorter{kvs: kvs, data: dst})
	}

	// This is where the encoded bytes are actually rearranged in the output buffer to reflect
	// the desired order.
	sortedOffset := 0
	for _, kv := range kvs {
		copy(tmp[sortedOffset:], dst[kv.offset:kv.nextOffset])
		sortedOffset += kv.nextOffset - kv.offset
	}
	copy(dst, tmp[:kvTotalLen])

	return nil

}

// keyValue is the position of an encoded pair in a buffer. All offsets are zero-based and relative
// to the first byte of the first encoded pair.
type keyValue struct {
	offset      int
	valueOffset int
	nextOffset  int
}

type bytewiseKeyValueSorter struct {
	kvs  []keyValue
	data []byte
}

func (x *bytewiseKeyValueSorter) Len() int {
	return len(x.kvs)
}

func (x *bytewiseKeyValueSorter) Swap(i, j int) {
	x.kvs[i], x.kvs[j] = x.kvs[j], x.kvs[i]
}

func (x *bytewiseKeyValueSorter) Less(i, j int) bool {
	kvi, kvj := x.kvs[i], x.kvs[j]
	return bytes.Compare(x.data[kvi.offset:kvi.valueOffset], x.data[kvj.offset:kvj.valueOffset]) <= 0
}

type lengthFirstKeyValueSorter struct {
	kvs  []keyValue
	data []byte
}

func (x *lengthFirstKeyValueSorter) Len() int {
	return len(x.kvs)
}

func (x *lengthFirstKeyValueSorter) Swap(i, j int) {
	x.kvs[i], x.kvs[j] = x.kvs[j], x.kvs[i]
}

func (x *lengthFirstKeyValueSorter) Less(i, j int) bool {
	kvi, kvj := x.kvs[i], x.kvs[j]
	if keyLengthDifference := (kvi.valueOffset - kvi.offset) - (kvj.valueOffset - kvj.offset); keyLengthDifference != 0 {
		return keyLengthDifference < 0
	}
	return bytes.Compare(x.data[kvi.offset:kvi.valueOffset], x.data[kvj.offset:kvj.valueOffset]) <= 0
}

var keyValuePool = sync.Pool{}

func getKeyValues(length int) *[]keyValue {
	v := keyValuePool.Get()
	if v == nil {
		y := make([]keyValue, length)
		return &y
	}
	x := v.(*[]keyValue)
	if cap(*x) >= length {
		*x = (*x)[:length]
		return x
	}
	// []keyValue from the pool does not have enough capacity.
	// Return it back to the pool and create a new one.
	keyValuePool.Put(x)
	y := make([]keyValue, length)
	return &y
}

func putKeyValues(x *[]keyValue) {
	*x = (*x)[:0]
	keyValuePool.Put(x)
}

func encodeStructToArray(e *bytes.Buffer, em *encMode, v reflect.Value) (err error) {
	structType, err := getEncodingStructType(v.Type())
	if err != nil {
		return err
	}

	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}

	flds := structType.fields

	encodeHead(e, byte(cborTypeArray), uint64(len(flds)))
	for i := 0; i < len(flds); i++ {
		f := flds[i]

		var fv reflect.Value
		if len(f.idx) == 1 {
			fv = v.Field(f.idx[0])
		} else {
			// Get embedded field value.  No error is expected.
			fv, _ = getFieldValue(v, f.idx, func(reflect.Value) (reflect.Value, error) {
				// Write CBOR nil for null pointer to embedded struct
				e.Write(cborNil)
				return reflect.Value{}, nil
			})
			if !fv.IsValid() {
				continue
			}
		}

		if err := f.ef(e, em, fv); err != nil {
			return err
		}
	}
	return nil
}

func encodeStruct(e *bytes.Buffer, em *encMode, v reflect.Value) (err error) {
	structType, err := getEncodingStructType(v.Type())
	if err != nil {
		return err
	}

	flds := structType.getFields(em)

	start := 0
	if em.sort == SortFastShuffle && len(flds) > 0 {
		start = rand.Intn(len(flds)) //nolint:gosec // Don't need a CSPRNG for deck cutting.
	}

	if b := em.encTagBytes(v.Type()); b != nil {
		e.Write(b)
	}

	// Encode head with struct field count.
	// Head is rewritten later if actual encoded field count is different from struct field count.
	encodedHeadLen := encodeHead(e, byte(cborTypeMap), uint64(len(flds)))

	kvbegin := e.Len()
	kvcount := 0
	for offset := 0; offset < len(flds); offset++ {
		f := flds[(start+offset)%len(flds)]

		var fv reflect.Value
		if len(f.idx) == 1 {
			fv = v.Field(f.idx[0])
		} else {
			// Get embedded field value.  No error is expected.
			fv, _ = getFieldValue(v, f.idx, func(reflect.Value) (reflect.Value, error) {
				// Skip null pointer to embedded struct
				return reflect.Value{}, nil
			})
			if !fv.IsValid() {
				continue
			}
		}
		if f.omitEmpty {
			empty, err := f.ief(em, fv)
			if err != nil {
				return err
			}
			if empty {
				continue
			}
		}
		if f.omitZero {
			zero, err := f.izf(fv)
			if err != nil {
				return err
			}
			if zero {
				continue
			}
		}

		if !f.keyAsInt && em.fieldName == FieldNameToByteString {
			e.Write(f.cborNameByteString)
		} else { // int or text string
			e.Write(f.cborName)
		}

		if err := f.ef(e, em, fv); err != nil {
			return err
		}

		kvcount++
	}

	if len(flds) == kvcount {
		// Encoded element count in head is the same as actual element count.
		return nil
	}

	// Overwrite the bytes that were reserved for the head before encoding the map entries.
	var actualHeadLen int
	{
		headbuf := *bytes.NewBuffer(e.Bytes()[kvbegin-encodedHeadLen : kvbegin-encodedHeadLen : kvbegin])
		actualHeadLen = encodeHead(&headbuf, byte(cborTypeMap), uint64(kvcount))
	}

	if actualHeadLen == encodedHeadLen {
		// The bytes reserved for the encoded head were exactly the right size, so the
		// encoded entries are already in their final positions.
		return nil
	}

	// We reserved more bytes than needed for the encoded head, based on the number of fields
	// encoded. The encoded entries are offset to the right by the number of excess reserved
	// bytes. Shift the entries left to remove the gap.
	excessReservedBytes := encodedHeadLen - actualHeadLen
	dst := e.Bytes()[kvbegin-excessReservedBytes : e.Len()-excessReservedBytes]
	src := e.Bytes()[kvbegin:e.Len()]
	copy(dst, src)

	// After shifting, the excess bytes are at the end of the output buffer and they are
	// garbage.
	e.Truncate(e.Len() - excessReservedBytes)
	return nil
}

func encodeIntf(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if v.IsNil() {
		e.Write(cborNil)
		return nil
	}
	return encode(e, em, v.Elem())
}

func encodeTime(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	t := v.Interface().(time.Time)
	if t.IsZero() {
		e.Write(cborNil) // Even if tag is required, encode as CBOR null.
		return nil
	}
	if em.timeTag == EncTagRequired {
		tagNumber := 1
		if em.time == TimeRFC3339 || em.time == TimeRFC3339Nano {
			tagNumber = 0
		}
		encodeHead(e, byte(cborTypeTag), uint64(tagNumber))
	}
	switch em.time {
	case TimeUnix:
		secs := t.Unix()
		return encodeInt(e, em, reflect.ValueOf(secs))

	case TimeUnixMicro:
		t = t.UTC().Round(time.Microsecond)
		f := float64(t.UnixNano()) / 1e9
		return encodeFloat(e, em, reflect.ValueOf(f))

	case TimeUnixDynamic:
		t = t.UTC().Round(time.Microsecond)
		secs, nsecs := t.Unix(), uint64(t.Nanosecond())
		if nsecs == 0 {
			return encodeInt(e, em, reflect.ValueOf(secs))
		}
		f := float64(secs) + float64(nsecs)/1e9
		return encodeFloat(e, em, reflect.ValueOf(f))

	case TimeRFC3339:
		s := t.Format(time.RFC3339)
		return encodeString(e, em, reflect.ValueOf(s))

	default: // TimeRFC3339Nano
		s := t.Format(time.RFC3339Nano)
		return encodeString(e, em, reflect.ValueOf(s))
	}
}

func encodeBigInt(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.bigIntConvert == BigIntConvertReject {
		return &UnsupportedTypeError{Type: typeBigInt}
	}

	vbi := v.Interface().(big.Int)
	sign := vbi.Sign()
	bi := new(big.Int).SetBytes(vbi.Bytes()) // bi is absolute value of v
	if sign < 0 {
		// For negative number, convert to CBOR encoded number (-v-1).
		bi.Sub(bi, big.NewInt(1))
	}

	if em.bigIntConvert == BigIntConvertShortest {
		if bi.IsUint64() {
			if sign >= 0 {
				// Encode as CBOR pos int (major type 0)
				encodeHead(e, byte(cborTypePositiveInt), bi.Uint64())
				return nil
			}
			// Encode as CBOR neg int (major type 1)
			encodeHead(e, byte(cborTypeNegativeInt), bi.Uint64())
			return nil
		}
	}

	tagNum := 2
	if sign < 0 {
		tagNum = 3
	}
	// Write tag number
	encodeHead(e, byte(cborTypeTag), uint64(tagNum))
	// Write bignum byte string
	b := bi.Bytes()
	encodeHead(e, byte(cborTypeByteString), uint64(len(b)))
	e.Write(b)
	return nil
}

type binaryMarshalerEncoder struct {
	alternateEncode  encodeFunc
	alternateIsEmpty isEmptyFunc
}

func (bme binaryMarshalerEncoder) encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.binaryMarshaler != BinaryMarshalerByteString {
		return bme.alternateEncode(e, em, v)
	}

	vt := v.Type()
	m, ok := v.Interface().(encoding.BinaryMarshaler)
	if !ok {
		pv := reflect.New(vt)
		pv.Elem().Set(v)
		m = pv.Interface().(encoding.BinaryMarshaler)
	}
	data, err := m.MarshalBinary()
	if err != nil {
		return err
	}
	if b := em.encTagBytes(vt); b != nil {
		e.Write(b)
	}
	encodeHead(e, byte(cborTypeByteString), uint64(len(data)))
	e.Write(data)
	return nil
}

func (bme binaryMarshalerEncoder) isEmpty(em *encMode, v reflect.Value) (bool, error) {
	if em.binaryMarshaler != BinaryMarshalerByteString {
		return bme.alternateIsEmpty(em, v)
	}

	m, ok := v.Interface().(encoding.BinaryMarshaler)
	if !ok {
		pv := reflect.New(v.Type())
		pv.Elem().Set(v)
		m = pv.Interface().(encoding.BinaryMarshaler)
	}
	data, err := m.MarshalBinary()
	if err != nil {
		return false, err
	}
	return len(data) == 0, nil
}

type textMarshalerEncoder struct {
	alternateEncode  encodeFunc
	alternateIsEmpty isEmptyFunc
}

func (tme textMarshalerEncoder) encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.textMarshaler == TextMarshalerNone {
		return tme.alternateEncode(e, em, v)
	}

	vt := v.Type()
	m, ok := v.Interface().(encoding.TextMarshaler)
	if !ok {
		pv := reflect.New(vt)
		pv.Elem().Set(v)
		m = pv.Interface().(encoding.TextMarshaler)
	}
	data, err := m.MarshalText()
	if err != nil {
		return fmt.Errorf("cbor: cannot marshal text for %s: %w", vt, err)
	}
	if b := em.encTagBytes(vt); b != nil {
		e.Write(b)
	}

	encodeHead(e, byte(cborTypeTextString), uint64(len(data)))
	e.Write(data)
	return nil
}

func (tme textMarshalerEncoder) isEmpty(em *encMode, v reflect.Value) (bool, error) {
	if em.textMarshaler == TextMarshalerNone {
		return tme.alternateIsEmpty(em, v)
	}

	m, ok := v.Interface().(encoding.TextMarshaler)
	if !ok {
		pv := reflect.New(v.Type())
		pv.Elem().Set(v)
		m = pv.Interface().(encoding.TextMarshaler)
	}
	data, err := m.MarshalText()
	if err != nil {
		return false, fmt.Errorf("cbor: cannot marshal text for %s: %w", v.Type(), err)
	}
	return len(data) == 0, nil
}

type jsonMarshalerEncoder struct {
	alternateEncode  encodeFunc
	alternateIsEmpty isEmptyFunc
}

func (jme jsonMarshalerEncoder) encode(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.jsonMarshalerTranscoder == nil {
		return jme.alternateEncode(e, em, v)
	}

	vt := v.Type()
	m, ok := v.Interface().(jsonMarshaler)
	if !ok {
		pv := reflect.New(vt)
		pv.Elem().Set(v)
		m = pv.Interface().(jsonMarshaler)
	}

	json, err := m.MarshalJSON()
	if err != nil {
		return err
	}

	offset := e.Len()

	if b := em.encTagBytes(vt); b != nil {
		e.Write(b)
	}

	if err := em.jsonMarshalerTranscoder.Transcode(e, bytes.NewReader(json)); err != nil {
		return &TranscodeError{err: err, rtype: vt, sourceFormat: "json", targetFormat: "cbor"}
	}

	// Validate that the transcode function has written exactly one well-formed data item.
	d := decoder{data: e.Bytes()[offset:], dm: getMarshalerDecMode(em.indefLength, em.tagsMd)}
	if err := d.wellformed(false, true); err != nil {
		e.Truncate(offset)
		return &TranscodeError{err: err, rtype: vt, sourceFormat: "json", targetFormat: "cbor"}
	}

	return nil
}

func (jme jsonMarshalerEncoder) isEmpty(em *encMode, v reflect.Value) (bool, error) {
	if em.jsonMarshalerTranscoder == nil {
		return jme.alternateIsEmpty(em, v)
	}

	// As with types implementing cbor.Marshaler, transcoded json.Marshaler values always encode
	// as exactly one complete CBOR data item.
	return false, nil
}

func encodeMarshalerType(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.tagsMd == TagsForbidden && v.Type() == typeRawTag {
		return errors.New("cbor: cannot encode cbor.RawTag when TagsMd is TagsForbidden")
	}
	m, ok := v.Interface().(Marshaler)
	if !ok {
		pv := reflect.New(v.Type())
		pv.Elem().Set(v)
		m = pv.Interface().(Marshaler)
	}
	data, err := m.MarshalCBOR()
	if err != nil {
		return err
	}

	// Verify returned CBOR data item from MarshalCBOR() is well-formed and passes tag validity for builtin tags 0-3.
	d := decoder{data: data, dm: getMarshalerDecMode(em.indefLength, em.tagsMd)}
	err = d.wellformed(false, true)
	if err != nil {
		return &MarshalerError{typ: v.Type(), err: err}
	}

	e.Write(data)
	return nil
}

func encodeTag(e *bytes.Buffer, em *encMode, v reflect.Value) error {
	if em.tagsMd == TagsForbidden {
		return errors.New("cbor: cannot encode cbor.Tag when TagsMd is TagsForbidden")
	}

	t := v.Interface().(Tag)

	if t.Number == 0 && t.Content == nil {
		// Marshal uninitialized cbor.Tag
		e.Write(cborNil)
		return nil
	}

	// Marshal tag number
	encodeHead(e, byte(cborTypeTag), t.Number)

	vem := *em // shallow copy

	// For built-in tags, disable settings that may introduce tag validity errors when
	// marshaling certain Content values.
	switch t.Number {
	case tagNumRFC3339Time:
		vem.stringType = StringToTextString
		vem.stringMajorType = cborTypeTextString
	case tagNumUnsignedBignum, tagNumNegativeBignum:
		vem.byteSliceLaterFormat = ByteSliceLaterFormatNone
		vem.byteSliceLaterEncodingTag = 0
	}

	// Marshal tag content
	return encode(e, &vem, reflect.ValueOf(t.Content))
}

// encodeHead writes CBOR head of specified type t and returns number of bytes written.
func encodeHead(e *bytes.Buffer, t byte, n uint64) int {
	if n <= maxAdditionalInformationWithoutArgument {
		const headSize = 1
		e.WriteByte(t | byte(n))
		return headSize
	}

	if n <= math.MaxUint8 {
		const headSize = 2
		scratch := [headSize]byte{
			t | byte(additionalInformationWith1ByteArgument),
			byte(n),
		}
		e.Write(scratch[:])
		return headSize
	}

	if n <= math.MaxUint16 {
		const headSize = 3
		var scratch [headSize]byte
		scratch[0] = t | byte(additionalInformationWith2ByteArgument)
		binary.BigEndian.PutUint16(scratch[1:], uint16(n))
		e.Write(scratch[:])
		return headSize
	}

	if n <= math.MaxUint32 {
		const headSize = 5
		var scratch [headSize]byte
		scratch[0] = t | byte(additionalInformationWith4ByteArgument)
		binary.BigEndian.PutUint32(scratch[1:], uint32(n))
		e.Write(scratch[:])
		return headSize
	}

	const headSize = 9
	var scratch [headSize]byte
	scratch[0] = t | byte(additionalInformationWith8ByteArgument)
	binary.BigEndian.PutUint64(scratch[1:], n)
	e.Write(scratch[:])
	return headSize
}

type jsonMarshaler interface{ MarshalJSON() ([]byte, error) }

var (
	typeMarshaler       = reflect.TypeOf((*Marshaler)(nil)).Elem()
	typeBinaryMarshaler = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
	typeTextMarshaler   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
	typeJSONMarshaler   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
	typeRawMessage      = reflect.TypeOf(RawMessage(nil))
	typeByteString      = reflect.TypeOf(ByteString(""))
)

func getEncodeFuncInternal(t reflect.Type) (ef encodeFunc, ief isEmptyFunc, izf isZeroFunc) {
	k := t.Kind()
	if k == reflect.Pointer {
		return getEncodeIndirectValueFunc(t), isEmptyPtr, getIsZeroFunc(t)
	}
	switch t {
	case typeSimpleValue:
		return encodeMarshalerType, isEmptyUint, getIsZeroFunc(t)

	case typeTag:
		return encodeTag, alwaysNotEmpty, getIsZeroFunc(t)

	case typeTime:
		return encodeTime, alwaysNotEmpty, getIsZeroFunc(t)

	case typeBigInt:
		return encodeBigInt, alwaysNotEmpty, getIsZeroFunc(t)

	case typeRawMessage:
		return encodeMarshalerType, isEmptySlice, getIsZeroFunc(t)

	case typeByteString:
		return encodeMarshalerType, isEmptyString, getIsZeroFunc(t)
	}
	if reflect.PointerTo(t).Implements(typeMarshaler) {
		return encodeMarshalerType, alwaysNotEmpty, getIsZeroFunc(t)
	}
	if reflect.PointerTo(t).Implements(typeBinaryMarshaler) {
		defer func() {
			// capture encoding method used for modes that disable BinaryMarshaler
			bme := binaryMarshalerEncoder{
				alternateEncode:  ef,
				alternateIsEmpty: ief,
			}
			ef = bme.encode
			ief = bme.isEmpty
		}()
	}
	if reflect.PointerTo(t).Implements(typeTextMarshaler) {
		defer func() {
			// capture encoding method used for modes that disable TextMarshaler
			tme := textMarshalerEncoder{
				alternateEncode:  ef,
				alternateIsEmpty: ief,
			}
			ef = tme.encode
			ief = tme.isEmpty
		}()
	}
	if reflect.PointerTo(t).Implements(typeJSONMarshaler) {
		defer func() {
			// capture encoding method used for modes that don't support transcoding
			// from types that implement json.Marshaler.
			jme := jsonMarshalerEncoder{
				alternateEncode:  ef,
				alternateIsEmpty: ief,
			}
			ef = jme.encode
			ief = jme.isEmpty
		}()
	}

	switch k {
	case reflect.Bool:
		return encodeBool, isEmptyBool, getIsZeroFunc(t)

	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return encodeInt, isEmptyInt, getIsZeroFunc(t)

	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		return encodeUint, isEmptyUint, getIsZeroFunc(t)

	case reflect.Float32, reflect.Float64:
		return encodeFloat, isEmptyFloat, getIsZeroFunc(t)

	case reflect.String:
		return encodeString, isEmptyString, getIsZeroFunc(t)

	case reflect.Slice:
		if t.Elem().Kind() == reflect.Uint8 {
			return encodeByteString, isEmptySlice, getIsZeroFunc(t)
		}
		fallthrough

	case reflect.Array:
		f, _, _ := getEncodeFunc(t.Elem())
		if f == nil {
			return nil, nil, nil
		}
		return arrayEncodeFunc{f: f}.encode, isEmptySlice, getIsZeroFunc(t)

	case reflect.Map:
		f := getEncodeMapFunc(t)
		if f == nil {
			return nil, nil, nil
		}
		return f, isEmptyMap, getIsZeroFunc(t)

	case reflect.Struct:
		// Get struct's special field "_" tag options
		if f, ok := t.FieldByName("_"); ok {
			tag := f.Tag.Get("cbor")
			if tag != "-" {
				if hasToArrayOption(tag) {
					return encodeStructToArray, isEmptyStruct, isZeroFieldStruct
				}
			}
		}
		return encodeStruct, isEmptyStruct, getIsZeroFunc(t)

	case reflect.Interface:
		return encodeIntf, isEmptyIntf, getIsZeroFunc(t)
	}
	return nil, nil, nil
}

func getEncodeIndirectValueFunc(t reflect.Type) encodeFunc {
	for t.Kind() == reflect.Pointer {
		t = t.Elem()
	}
	f, _, _ := getEncodeFunc(t)
	if f == nil {
		return nil
	}
	return func(e *bytes.Buffer, em *encMode, v reflect.Value) error {
		for v.Kind() == reflect.Pointer && !v.IsNil() {
			v = v.Elem()
		}
		if v.Kind() == reflect.Pointer && v.IsNil() {
			e.Write(cborNil)
			return nil
		}
		return f(e, em, v)
	}
}

func alwaysNotEmpty(_ *encMode, _ reflect.Value) (empty bool, err error) {
	return false, nil
}

func isEmptyBool(_ *encMode, v reflect.Value) (bool, error) {
	return !v.Bool(), nil
}

func isEmptyInt(_ *encMode, v reflect.Value) (bool, error) {
	return v.Int() == 0, nil
}

func isEmptyUint(_ *encMode, v reflect.Value) (bool, error) {
	return v.Uint() == 0, nil
}

func isEmptyFloat(_ *encMode, v reflect.Value) (bool, error) {
	return v.Float() == 0.0, nil
}

func isEmptyString(_ *encMode, v reflect.Value) (bool, error) {
	return v.Len() == 0, nil
}

func isEmptySlice(_ *encMode, v reflect.Value) (bool, error) {
	return v.Len() == 0, nil
}

func isEmptyMap(_ *encMode, v reflect.Value) (bool, error) {
	return v.Len() == 0, nil
}

func isEmptyPtr(_ *encMode, v reflect.Value) (bool, error) {
	return v.IsNil(), nil
}

func isEmptyIntf(_ *encMode, v reflect.Value) (bool, error) {
	return v.IsNil(), nil
}

func isEmptyStruct(em *encMode, v reflect.Value) (bool, error) {
	structType, err := getEncodingStructType(v.Type())
	if err != nil {
		return false, err
	}

	if em.omitEmpty == OmitEmptyGoValue {
		return false, nil
	}

	if structType.toArray {
		return len(structType.fields) == 0, nil
	}

	if len(structType.fields) > len(structType.omitEmptyFieldsIdx) {
		return false, nil
	}

	for _, i := range structType.omitEmptyFieldsIdx {
		f := structType.fields[i]

		// Get field value
		var fv reflect.Value
		if len(f.idx) == 1 {
			fv = v.Field(f.idx[0])
		} else {
			// Get embedded field value.  No error is expected.
			fv, _ = getFieldValue(v, f.idx, func(reflect.Value) (reflect.Value, error) {
				// Skip null pointer to embedded struct
				return reflect.Value{}, nil
			})
			if !fv.IsValid() {
				continue
			}
		}

		empty, err := f.ief(em, fv)
		if err != nil {
			return false, err
		}
		if !empty {
			return false, nil
		}
	}
	return true, nil
}

func cannotFitFloat32(f64 float64) bool {
	f32 := float32(f64)
	return float64(f32) != f64
}

// float32NaNFromReflectValue extracts float32 NaN from reflect.Value while preserving NaN's quiet bit.
func float32NaNFromReflectValue(v reflect.Value) float32 {
	// Keith Randall's workaround for issue https://github.com/golang/go/issues/36400
	p := reflect.New(v.Type())
	p.Elem().Set(v)
	f32 := p.Convert(reflect.TypeOf((*float32)(nil))).Elem().Interface().(float32)
	return f32
}

type isZeroer interface {
	IsZero() bool
}

var isZeroerType = reflect.TypeOf((*isZeroer)(nil)).Elem()

// getIsZeroFunc returns a function for the given type that can be called to determine if a given value is zero.
// Types that implement `IsZero() bool` are delegated to for non-nil values.
// Types that do not implement `IsZero() bool` use the reflect.Value#IsZero() implementation.
// The returned function matches behavior of stdlib encoding/json behavior in Go 1.24+.
func getIsZeroFunc(t reflect.Type) isZeroFunc {
	// Provide a function that uses a type's IsZero method if defined.
	switch {
	case t == nil:
		return isZeroDefault
	case t.Kind() == reflect.Interface && t.Implements(isZeroerType):
		return isZeroInterfaceCustom
	case t.Kind() == reflect.Pointer && t.Implements(isZeroerType):
		return isZeroPointerCustom
	case t.Implements(isZeroerType):
		return isZeroCustom
	case reflect.PointerTo(t).Implements(isZeroerType):
		return isZeroAddrCustom
	default:
		return isZeroDefault
	}
}

// isZeroInterfaceCustom returns true for nil or pointer-to-nil values,
// and delegates to the custom IsZero() implementation otherwise.
func isZeroInterfaceCustom(v reflect.Value) (bool, error) {
	kind := v.Kind()

	switch kind {
	case reflect.Chan, reflect.Func, reflect.Map, reflect.Pointer, reflect.Interface, reflect.Slice:
		if v.IsNil() {
			return true, nil
		}
	}

	switch kind {
	case reflect.Interface, reflect.Pointer:
		if elem := v.Elem(); elem.Kind() == reflect.Pointer && elem.IsNil() {
			return true, nil
		}
	}

	return v.Interface().(isZeroer).IsZero(), nil
}

// isZeroPointerCustom returns true for nil values,
// and delegates to the custom IsZero() implementation otherwise.
func isZeroPointerCustom(v reflect.Value) (bool, error) {
	if v.IsNil() {
		return true, nil
	}
	return v.Interface().(isZeroer).IsZero(), nil
}

// isZeroCustom delegates to the custom IsZero() implementation.
func isZeroCustom(v reflect.Value) (bool, error) {
	return v.Interface().(isZeroer).IsZero(), nil
}

// isZeroAddrCustom delegates to the custom IsZero() implementation of the addr of the value.
func isZeroAddrCustom(v reflect.Value) (bool, error) {
	if !v.CanAddr() {
		// Temporarily box v so we can take the address.
		v2 := reflect.New(v.Type()).Elem()
		v2.Set(v)
		v = v2
	}
	return v.Addr().Interface().(isZeroer).IsZero(), nil
}

// isZeroDefault calls reflect.Value#IsZero()
func isZeroDefault(v reflect.Value) (bool, error) {
	if !v.IsValid() {
		// v is zero value
		return true, nil
	}
	return v.IsZero(), nil
}

// isZeroFieldStruct is used to determine whether to omit toarray structs
func isZeroFieldStruct(v reflect.Value) (bool, error) {
	structType, err := getEncodingStructType(v.Type())
	if err != nil {
		return false, err
	}
	return len(structType.fields) == 0, nil
}