1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
|
// Code generated from file "11-allmethods_tmpl.go"; DO NOT EDIT.
// Copyright (c) 2025 Karl Gaissmaier
// SPDX-License-Identifier: MIT
package bart
import (
"bytes"
"encoding/json"
"fmt"
"io"
"iter"
"net/netip"
"slices"
"strings"
"github.com/gaissmai/bart/internal/nodes"
)
func (t *Table[V]) sizeUpdate(is4 bool, delta int) {
if is4 {
t.size4 += delta
return
}
t.size6 += delta
}
// Insert adds or updates a prefix-value pair in the routing table.
// If the prefix already exists, its value is updated; otherwise a new entry is created.
// Invalid prefixes are silently ignored.
//
// The prefix is automatically canonicalized using pfx.Masked() to ensure
// consistent behavior regardless of host bits in the input.
func (t *Table[V]) Insert(pfx netip.Prefix, val V) {
if !pfx.IsValid() {
return
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
if exists := n.Insert(pfx, val, 0); exists {
return
}
// true insert, update size
t.sizeUpdate(is4, 1)
}
// InsertPersist is similar to Insert but the receiver isn't modified.
//
// All nodes touched during insert are cloned and a new Table is returned.
// This is not a full [Table.Clone], all untouched nodes are still referenced
// from both Tables.
//
// If the payload type V contains pointers or needs deep copying,
// it must implement the [bart.Cloner] interface to support correct cloning.
//
// Due to cloning overhead this is significantly slower than Insert,
// typically taking μsec instead of nsec.
func (t *Table[V]) InsertPersist(pfx netip.Prefix, val V) *Table[V] {
if !pfx.IsValid() {
return t
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
// share size counters; root nodes cloned selectively.
pt := &Table[V]{
size4: t.size4,
size6: t.size6,
}
// Create a cloning function for deep copying values;
// returns nil if V does not implement the Cloner interface.
cloneFn := cloneFnFactory[V]()
// Clone root node corresponding to the IP version, for copy-on-write.
n := &pt.root4
if is4 {
pt.root4 = *t.root4.CloneFlat(cloneFn)
pt.root6 = t.root6
} else {
pt.root4 = t.root4
pt.root6 = *t.root6.CloneFlat(cloneFn)
n = &pt.root6
}
if !n.InsertPersist(cloneFn, pfx, val, 0) {
pt.sizeUpdate(is4, 1)
}
return pt
}
// Delete removes the exact prefix pfx from the table in-place.
//
// This is an exact-match operation (no LPM). If pfx exists, the entry is
// removed. If pfx does not exist or pfx is invalid, the table is left unchanged.
//
// The prefix is canonicalized (Masked) before lookup.
func (t *Table[V]) Delete(pfx netip.Prefix) {
if !pfx.IsValid() {
return
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
if exists := n.Delete(pfx); exists {
t.sizeUpdate(is4, -1)
}
}
// Get performs an exact-prefix lookup and returns whether the exact
// prefix exists. The prefix is canonicalized (Masked) before lookup.
//
// This is an exact-match operation (no LPM). The prefix must match exactly
// in both address and prefix length to be found. If pfx exists, the
// associated value (zero value for Lite) and found=true is returned.
// If pfx does not exist or pfx is invalid, the zero value for V and
// exists=false is returned.
//
// For longest-prefix-match (LPM) lookups, use Contains(ip), Lookup(ip),
// LookupPrefix(pfx) or LookupPrefixLPM(pfx) instead.
func (t *Table[V]) Get(pfx netip.Prefix) (val V, exists bool) {
if !pfx.IsValid() {
return val, exists
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
return n.Get(pfx)
}
// DeletePersist is similar to Delete but does not modify the receiver.
//
// It performs a copy-on-write delete operation, cloning all nodes touched during
// deletion and returning a new Table reflecting the change.
//
// If the prefix is invalid or doesn't exist, the original table is
// returned unchanged.
//
// If the payload type V contains pointers or requires deep copying,
// it must implement the [bart.Cloner] interface for correct cloning.
//
// Due to cloning overhead this is significantly slower than Delete,
// typically taking μsec instead of nsec.
func (t *Table[V]) DeletePersist(pfx netip.Prefix) *Table[V] {
if !pfx.IsValid() {
return t
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
// Preflight check: avoid cloning if prefix doesn't exist
n := t.rootNodeByVersion(is4)
if _, found := n.Get(pfx); !found {
return t
}
// share size counters; root nodes cloned selectively.
pt := &Table[V]{
size4: t.size4,
size6: t.size6,
}
// Create a cloning function for deep copying values;
// returns nil if V does not implement the Cloner interface.
cloneFn := cloneFnFactory[V]()
// Clone root node corresponding to the IP version, for copy-on-write.
if is4 {
pt.root4 = *t.root4.CloneFlat(cloneFn)
pt.root6 = t.root6
n = &pt.root4
} else {
pt.root4 = t.root4
pt.root6 = *t.root6.CloneFlat(cloneFn)
n = &pt.root6
}
if exists := n.DeletePersist(cloneFn, pfx); exists {
pt.sizeUpdate(is4, -1)
}
return pt
}
// Modify applies an insert, update, or delete operation for the value
// associated with the given prefix. The supplied callback decides the
// operation: it is called with the current value (or zero if not found)
// and a boolean indicating whether the prefix exists. The callback must
// return a new value and a delete flag: del == false inserts or updates,
// del == true deletes the entry if it exists (otherwise no-op).
//
// The operation is determined by the callback function, which is called with:
//
// val: the current value (or zero value if not found)
// found: true if the prefix currently exists, false otherwise
//
// The callback returns:
//
// val: the new value to insert or update (ignored if del == true)
// del: true to delete the entry, false to insert or update
//
// Summary of callback semantics:
//
// | cb-input | cb-return | Ops |
// ------------------------------------- --------
// | (zero, false) | (_, true) | no-op |
// | (zero, false) | (newVal, false) | insert |
// | (oldVal, true) | (newVal, false) | update |
// | (oldVal, true) | (_, true) | delete |
// ------------------------------------- --------
func (t *Table[V]) Modify(pfx netip.Prefix, cb func(_ V, ok bool) (_ V, del bool)) {
if !pfx.IsValid() {
return
}
// canonicalize prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
delta := n.Modify(pfx, cb)
t.sizeUpdate(is4, delta)
}
// ModifyPersist is similar to Modify but the receiver isn't modified and
// a new *Table is returned.
func (t *Table[V]) ModifyPersist(pfx netip.Prefix, cb func(_ V, ok bool) (_ V, del bool)) *Table[V] {
if !pfx.IsValid() {
return t
}
// make a cheap test in front of expensive operation
oldVal, ok := t.Get(pfx)
val := oldVal
// to clone or not to clone ...
cloneFn := cloneFnFactory[V]()
if cloneFn != nil && ok {
val = cloneFn(oldVal)
}
newVal, del := cb(val, ok)
switch {
case !ok && del: // no-op
return t
case !ok && !del: // insert
return t.InsertPersist(pfx, newVal)
case ok && !del: // update
return t.InsertPersist(pfx, newVal)
case ok && del: // delete
return t.DeletePersist(pfx)
}
panic("unreachable")
}
// Supernets returns an iterator over all supernet routes that cover the given prefix pfx.
//
// The traversal searches both exact-length and shorter (less specific) prefixes that
// include pfx. Starting from the most specific position in the trie,
// it walks upward through parent nodes and yields any matching entries found at each level.
//
// The iteration order is reverse-CIDR: from longest prefix match (LPM) towards
// least-specific routes.
//
// This can be used to enumerate all covering supernet routes in routing-based
// policy engines, diagnostics tools, or fallback resolution logic.
//
// Example:
//
// for supernet, val := range table.Supernets(netip.MustParsePrefix("192.0.2.128/25")) {
// fmt.Println("Covered by:", supernet, "->", val)
// }
//
// The iteration can be stopped early by breaking from the range loop.
// Returns an empty iterator if the prefix is invalid.
func (t *Table[V]) Supernets(pfx netip.Prefix) iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
if !pfx.IsValid() {
return
}
// canonicalize the prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
n.Supernets(pfx, yield)
}
}
// Subnets returns an iterator over all subnets of the given prefix
// in natural CIDR sort order. This includes prefixes of the same length
// (exact match) and longer (more specific) prefixes that are contained
// within the given prefix.
//
// Example:
//
// for sub, val := range table.Subnets(netip.MustParsePrefix("10.0.0.0/8")) {
// fmt.Println("Covered:", sub, "->", val)
// }
//
// The iteration can be stopped early by breaking from the range loop.
// Returns an empty iterator if the prefix is invalid.
func (t *Table[V]) Subnets(pfx netip.Prefix) iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
if !pfx.IsValid() {
return
}
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
n.Subnets(pfx, yield)
}
}
// OverlapsPrefix reports whether any prefix in the routing table overlaps with
// the given prefix. Two prefixes overlap if they share any IP addresses.
//
// The check is bidirectional: it returns true if the input prefix is covered by an existing
// route, or if any stored route is itself contained within the input prefix.
//
// Internally, the function normalizes the prefix and descends the relevant trie branch,
// using stride-based logic to identify overlap without performing a full lookup.
//
// This is useful for containment tests, route validation, or policy checks using prefix
// semantics without retrieving exact matches.
func (t *Table[V]) OverlapsPrefix(pfx netip.Prefix) bool {
if !pfx.IsValid() {
return false
}
// canonicalize the prefix
pfx = pfx.Masked()
is4 := pfx.Addr().Is4()
n := t.rootNodeByVersion(is4)
return n.OverlapsPrefixAtDepth(pfx, 0)
}
// Overlaps reports whether any route in the receiver table overlaps
// with a route in the other table, in either direction.
//
// The overlap check is bidirectional: it returns true if any IP prefix
// in the receiver is covered by the other table, or vice versa.
// This includes partial overlaps, exact matches, and supernet/subnet relationships.
//
// Both IPv4 and IPv6 route trees are compared independently. If either
// tree has overlapping routes, the function returns true.
//
// This is useful for conflict detection, policy enforcement,
// or validating mutually exclusive routing domains.
func (t *Table[V]) Overlaps(o *Table[V]) bool {
if o == nil {
return false
}
return t.Overlaps4(o) || t.Overlaps6(o)
}
// Overlaps4 is like [Table.Overlaps] but for the v4 routing table only.
func (t *Table[V]) Overlaps4(o *Table[V]) bool {
if o == nil || t.size4 == 0 || o.size4 == 0 {
return false
}
return t.root4.Overlaps(&o.root4, 0)
}
// Overlaps6 is like [Table.Overlaps] but for the v6 routing table only.
func (t *Table[V]) Overlaps6(o *Table[V]) bool {
if o == nil || t.size6 == 0 || o.size6 == 0 {
return false
}
return t.root6.Overlaps(&o.root6, 0)
}
// Union merges another routing table into the receiver table, modifying it in-place.
//
// All prefixes and values from the other table (o) are inserted into the receiver.
// If a duplicate prefix exists in both tables, the value from o replaces the existing entry.
// This duplicate is shallow-copied by default, but if the value type V implements the
// Cloner interface, the value is deeply cloned before insertion. See also Table.Clone.
func (t *Table[V]) Union(o *Table[V]) {
if o == nil || o == t || (o.size4 == 0 && o.size6 == 0) {
return
}
// Create a cloning function for deep copying values;
// returns nil if V does not implement the Cloner interface.
cloneFn := cloneFnFactory[V]()
dup4 := t.root4.UnionRec(cloneFn, &o.root4, 0)
dup6 := t.root6.UnionRec(cloneFn, &o.root6, 0)
t.size4 += o.size4 - dup4
t.size6 += o.size6 - dup6
}
// UnionPersist is similar to [Union] but the receiver isn't modified.
//
// All nodes touched during union are cloned and a new *Table is returned.
// If o is nil or empty, no nodes are touched and the receiver may be
// returned unchanged.
func (t *Table[V]) UnionPersist(o *Table[V]) *Table[V] {
if o == nil || o == t || (o.size4 == 0 && o.size6 == 0) {
return t
}
// Create a cloning function for deep copying values;
// returns nil if V does not implement the Cloner interface.
cloneFn := cloneFnFactory[V]()
// new Table with root nodes just copied.
pt := &Table[V]{
root4: t.root4,
root6: t.root6,
//
size4: t.size4,
size6: t.size6,
}
// only clone the root node if there is something to union
if o.size4 != 0 {
pt.root4 = *t.root4.CloneFlat(cloneFn)
}
if o.size6 != 0 {
pt.root6 = *t.root6.CloneFlat(cloneFn)
}
dup4 := pt.root4.UnionRecPersist(cloneFn, &o.root4, 0)
dup6 := pt.root6.UnionRecPersist(cloneFn, &o.root6, 0)
pt.size4 += o.size4 - dup4
pt.size6 += o.size6 - dup6
return pt
}
// Equal checks whether two tables are structurally and semantically equal.
// It ensures both trees (IPv4-based and IPv6-based) have the same sizes and
// recursively compares their root nodes.
func (t *Table[V]) Equal(o *Table[V]) bool {
if o == nil || t.size4 != o.size4 || t.size6 != o.size6 {
return false
}
if o == t {
return true
}
return t.root4.EqualRec(&o.root4) && t.root6.EqualRec(&o.root6)
}
// Clone returns a copy of the routing table.
// The payload of type V is shallow copied, but if type V implements the [Cloner] interface,
// the values are cloned.
func (t *Table[V]) Clone() *Table[V] {
if t == nil {
return nil
}
c := new(Table[V])
cloneFn := cloneFnFactory[V]()
c.root4 = *t.root4.CloneRec(cloneFn)
c.root6 = *t.root6.CloneRec(cloneFn)
c.size4 = t.size4
c.size6 = t.size6
return c
}
// Size returns the prefix count.
func (t *Table[V]) Size() int {
return t.size4 + t.size6
}
// Size4 returns the IPv4 prefix count.
func (t *Table[V]) Size4() int {
return t.size4
}
// Size6 returns the IPv6 prefix count.
func (t *Table[V]) Size6() int {
return t.size6
}
// All returns an iterator over all prefix–value pairs in the table.
//
// The entries from both IPv4 and IPv6 subtries are yielded using an internal recursive traversal.
// The iteration order is unspecified and may vary between calls; for a stable order, use AllSorted.
//
// You can use All directly in a for-range loop without providing a yield function.
// The Go compiler automatically synthesizes the yield callback for you:
//
// for prefix, value := range t.All() {
// fmt.Println(prefix, value)
// }
//
// Under the hood, the loop body is passed as a yield function to the iterator.
// If you break or return from the loop, iteration stops early as expected.
//
// IMPORTANT: Modifying or deleting entries during iteration is not allowed,
// as this would interfere with the internal traversal and may corrupt or
// prematurely terminate the iteration. If mutation of the table during
// traversal is required use persistent table methods, e.g.
//
// pt := t // shallow copy of t
// for pfx, val := range t.All() {
// if cond(pfx, val) {
// pt = pt.DeletePersist(pfx)
// }
// }
func (t *Table[V]) All() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root4.AllRec(stridePath{}, 0, true, yield) && t.root6.AllRec(stridePath{}, 0, false, yield)
}
}
// All4 is like [Table.All] but only for the v4 routing table.
func (t *Table[V]) All4() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root4.AllRec(stridePath{}, 0, true, yield)
}
}
// All6 is like [Table.All] but only for the v6 routing table.
func (t *Table[V]) All6() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root6.AllRec(stridePath{}, 0, false, yield)
}
}
// AllSorted returns an iterator over all prefix–value pairs in the table,
// ordered in canonical CIDR prefix sort order.
//
// This can be used directly with a for-range loop;
// the Go compiler provides the yield function implicitly:
//
// for prefix, value := range t.AllSorted() {
// fmt.Println(prefix, value)
// }
//
// The traversal is stable and predictable across calls.
// Iteration stops early if you break out of the loop.
//
// IMPORTANT: Deleting entries during iteration is not allowed,
// as this would interfere with the internal traversal and may corrupt or
// prematurely terminate the iteration. If mutation of the table during
// traversal is required use persistent table methods.
func (t *Table[V]) AllSorted() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root4.AllRecSorted(stridePath{}, 0, true, yield) &&
t.root6.AllRecSorted(stridePath{}, 0, false, yield)
}
}
// AllSorted4 is like [Table.AllSorted] but only for the v4 routing table.
func (t *Table[V]) AllSorted4() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root4.AllRecSorted(stridePath{}, 0, true, yield)
}
}
// AllSorted6 is like [Table.AllSorted] but only for the v6 routing table.
func (t *Table[V]) AllSorted6() iter.Seq2[netip.Prefix, V] {
return func(yield func(netip.Prefix, V) bool) {
if t == nil {
return
}
_ = t.root6.AllRecSorted(stridePath{}, 0, false, yield)
}
}
// Fprint writes a hierarchical tree diagram of the ordered CIDRs
// with default formatted payload V to w.
//
// The order from top to bottom is in ascending order of the prefix address
// and the subtree structure is determined by the CIDRs coverage.
//
// ▼
// ├─ 10.0.0.0/8 (V)
// │ ├─ 10.0.0.0/24 (V)
// │ └─ 10.0.1.0/24 (V)
// ├─ 127.0.0.0/8 (V)
// │ └─ 127.0.0.1/32 (V)
// ├─ 169.254.0.0/16 (V)
// ├─ 172.16.0.0/12 (V)
// └─ 192.168.0.0/16 (V)
// └─ 192.168.1.0/24 (V)
// ▼
// └─ ::/0 (V)
// ├─ ::1/128 (V)
// ├─ 2000::/3 (V)
// │ └─ 2001:db8::/32 (V)
// └─ fe80::/10 (V)
func (t *Table[V]) Fprint(w io.Writer) error {
if w == nil {
return fmt.Errorf("nil writer")
}
if t == nil {
return nil
}
// v4
if err := t.fprint(w, true); err != nil {
return err
}
// v6
if err := t.fprint(w, false); err != nil {
return err
}
return nil
}
// fprint is the version dependent adapter to fprintRec.
func (t *Table[V]) fprint(w io.Writer, is4 bool) error {
n := t.rootNodeByVersion(is4)
if n.IsEmpty() {
return nil
}
if _, err := fmt.Fprint(w, "▼\n"); err != nil {
return err
}
startParent := nodes.TrieItem[V]{
Node: nil,
Idx: 0,
Path: stridePath{},
Is4: is4,
}
return n.FprintRec(w, startParent, "", shouldPrintValues[V]())
}
// MarshalText implements the [encoding.TextMarshaler] interface,
// just a wrapper for [Table.Fprint].
func (t *Table[V]) MarshalText() ([]byte, error) {
w := new(bytes.Buffer)
if err := t.Fprint(w); err != nil {
return nil, err
}
return w.Bytes(), nil
}
// MarshalJSON dumps the table into two sorted lists: for ipv4 and ipv6.
// Every root and subnet is an array, not a map, because the order matters.
func (t *Table[V]) MarshalJSON() ([]byte, error) {
if t == nil {
return []byte("null"), nil
}
result := struct {
Ipv4 []DumpListNode[V] `json:"ipv4,omitempty"`
Ipv6 []DumpListNode[V] `json:"ipv6,omitempty"`
}{
Ipv4: t.DumpList4(),
Ipv6: t.DumpList6(),
}
buf, err := json.Marshal(result)
if err != nil {
return nil, err
}
return buf, nil
}
// DumpList4 dumps the ipv4 tree into a list of roots and their subnets.
// It can be used to analyze the tree or build the text or JSON serialization.
func (t *Table[V]) DumpList4() []DumpListNode[V] {
if t == nil {
return nil
}
return t.dumpListRec(&t.root4, 0, stridePath{}, 0, true)
}
// DumpList6 dumps the ipv6 tree into a list of roots and their subnets.
// It can be used to analyze the tree or build custom JSON representation.
func (t *Table[V]) DumpList6() []DumpListNode[V] {
if t == nil {
return nil
}
return t.dumpListRec(&t.root6, 0, stridePath{}, 0, false)
}
// dumpListRec, build the data structure rec-descent with the help of directItemsRec.
// anyNode is nodes.BartNode, nodes.FastNode or nodes.LiteNode
func (t *Table[V]) dumpListRec(anyNode any, parentIdx uint8, path stridePath, depth int, is4 bool) []DumpListNode[V] {
// recursion stop condition
if anyNode == nil {
return nil
}
// the same method is generated for all table types, therefore
// type assert to the smallest needed interface.
// The panic on wrong type assertion is by intention, MUST NOT happen
n := anyNode.(interface {
DirectItemsRec(uint8, stridePath, int, bool) []nodes.TrieItem[V]
})
directItems := n.DirectItemsRec(parentIdx, path, depth, is4)
// sort the items by prefix
slices.SortFunc(directItems, func(a, b nodes.TrieItem[V]) int {
return cmpPrefix(a.Cidr, b.Cidr)
})
dumpNodes := make([]DumpListNode[V], 0, len(directItems))
for _, item := range directItems {
dumpNodes = append(dumpNodes, DumpListNode[V]{
CIDR: item.Cidr,
Value: item.Val,
// build it rec-descent, item.Node is also from type any
Subnets: t.dumpListRec(item.Node, item.Idx, item.Path, item.Depth, is4),
})
}
return dumpNodes
}
// dumpString is just a wrapper for dump.
func (t *Table[V]) dumpString() string {
w := new(strings.Builder)
t.dump(w)
return w.String()
}
// dump the table structure and all the nodes to w.
func (t *Table[V]) dump(w io.Writer) {
if t == nil {
return
}
if t.size4 > 0 {
stats := t.root4.StatsRec()
fmt.Fprintln(w)
fmt.Fprintf(w, "### IPv4: size(%d), subnodes(%d), prefixes(%d), leaves(%d), fringes(%d)",
t.size4, stats.SubNodes, stats.Prefixes, stats.Leaves, stats.Fringes)
t.root4.DumpRec(w, stridePath{}, 0, true, shouldPrintValues[V]())
}
if t.size6 > 0 {
stats := t.root6.StatsRec()
fmt.Fprintln(w)
fmt.Fprintf(w, "### IPv6: size(%d), subnodes(%d), prefixes(%d), leaves(%d), fringes(%d)",
t.size6, stats.SubNodes, stats.Prefixes, stats.Leaves, stats.Fringes)
t.root6.DumpRec(w, stridePath{}, 0, false, shouldPrintValues[V]())
}
}
|