1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
package deque
import "fmt"
// minCapacity is the smallest capacity that deque may have. Must be power of 2
// for bitwise modulus: x % n == x & (n - 1).
const minCapacity = 16
// Deque represents a single instance of the deque data structure. A Deque
// instance contains items of the type specified by the type argument.
type Deque[T any] struct {
buf []T
head int
tail int
count int
minCap int
}
// New creates a new Deque, optionally setting the current and minimum capacity
// when non-zero values are given for these. The Deque instance returns
// operates on items of the type specified by the type argument. For example,
// to create a Deque that contains strings,
//
// stringDeque := deque.New[string]()
//
// To create a Deque with capacity to store 2048 ints without resizing, and
// that will not resize below space for 32 items when removing items:
//
// d := deque.New[int](2048, 32)
//
// To create a Deque that has not yet allocated memory, but after it does will
// never resize to have space for less than 64 items:
//
// d := deque.New[int](0, 64)
//
// Any size values supplied here are rounded up to the nearest power of 2.
func New[T any](size ...int) *Deque[T] {
var capacity, minimum int
if len(size) >= 1 {
capacity = size[0]
if len(size) >= 2 {
minimum = size[1]
}
}
minCap := minCapacity
for minCap < minimum {
minCap <<= 1
}
var buf []T
if capacity != 0 {
bufSize := minCap
for bufSize < capacity {
bufSize <<= 1
}
buf = make([]T, bufSize)
}
return &Deque[T]{
buf: buf,
minCap: minCap,
}
}
// Cap returns the current capacity of the Deque. If q is nil, q.Cap() is zero.
func (q *Deque[T]) Cap() int {
if q == nil {
return 0
}
return len(q.buf)
}
// Len returns the number of elements currently stored in the queue. If q is
// nil, q.Len() is zero.
func (q *Deque[T]) Len() int {
if q == nil {
return 0
}
return q.count
}
// PushBack appends an element to the back of the queue. Implements FIFO when
// elements are removed with PopFront, and LIFO when elements are removed with
// PopBack.
func (q *Deque[T]) PushBack(elem T) {
q.growIfFull()
q.buf[q.tail] = elem
// Calculate new tail position.
q.tail = q.next(q.tail)
q.count++
}
// PushFront prepends an element to the front of the queue.
func (q *Deque[T]) PushFront(elem T) {
q.growIfFull()
// Calculate new head position.
q.head = q.prev(q.head)
q.buf[q.head] = elem
q.count++
}
// PopFront removes and returns the element from the front of the queue.
// Implements FIFO when used with PushBack. If the queue is empty, the call
// panics.
func (q *Deque[T]) PopFront() T {
if q.count <= 0 {
panic("deque: PopFront() called on empty queue")
}
ret := q.buf[q.head]
var zero T
q.buf[q.head] = zero
// Calculate new head position.
q.head = q.next(q.head)
q.count--
q.shrinkIfExcess()
return ret
}
// PopBack removes and returns the element from the back of the queue.
// Implements LIFO when used with PushBack. If the queue is empty, the call
// panics.
func (q *Deque[T]) PopBack() T {
if q.count <= 0 {
panic("deque: PopBack() called on empty queue")
}
// Calculate new tail position
q.tail = q.prev(q.tail)
// Remove value at tail.
ret := q.buf[q.tail]
var zero T
q.buf[q.tail] = zero
q.count--
q.shrinkIfExcess()
return ret
}
// Front returns the element at the front of the queue. This is the element
// that would be returned by PopFront. This call panics if the queue is empty.
func (q *Deque[T]) Front() T {
if q.count <= 0 {
panic("deque: Front() called when empty")
}
return q.buf[q.head]
}
// Back returns the element at the back of the queue. This is the element that
// would be returned by PopBack. This call panics if the queue is empty.
func (q *Deque[T]) Back() T {
if q.count <= 0 {
panic("deque: Back() called when empty")
}
return q.buf[q.prev(q.tail)]
}
// At returns the element at index i in the queue without removing the element
// from the queue. This method accepts only non-negative index values. At(0)
// refers to the first element and is the same as Front(). At(Len()-1) refers
// to the last element and is the same as Back(). If the index is invalid, the
// call panics.
//
// The purpose of At is to allow Deque to serve as a more general purpose
// circular buffer, where items are only added to and removed from the ends of
// the deque, but may be read from any place within the deque. Consider the
// case of a fixed-size circular log buffer: A new entry is pushed onto one end
// and when full the oldest is popped from the other end. All the log entries
// in the buffer must be readable without altering the buffer contents.
func (q *Deque[T]) At(i int) T {
if i < 0 || i >= q.count {
panic(outOfRangeText(i, q.Len()))
}
// bitwise modulus
return q.buf[(q.head+i)&(len(q.buf)-1)]
}
// Set assigns the item to index i in the queue. Set indexes the deque the same
// as At but perform the opposite operation. If the index is invalid, the call
// panics.
func (q *Deque[T]) Set(i int, item T) {
if i < 0 || i >= q.count {
panic(outOfRangeText(i, q.Len()))
}
// bitwise modulus
q.buf[(q.head+i)&(len(q.buf)-1)] = item
}
// Clear removes all elements from the queue, but retains the current capacity.
// This is useful when repeatedly reusing the queue at high frequency to avoid
// GC during reuse. The queue will not be resized smaller as long as items are
// only added. Only when items are removed is the queue subject to getting
// resized smaller.
func (q *Deque[T]) Clear() {
var zero T
modBits := len(q.buf) - 1
h := q.head
for i := 0; i < q.Len(); i++ {
q.buf[(h+i)&modBits] = zero
}
q.head = 0
q.tail = 0
q.count = 0
}
// Rotate rotates the deque n steps front-to-back. If n is negative, rotates
// back-to-front. Having Deque provide Rotate avoids resizing that could happen
// if implementing rotation using only Pop and Push methods. If q.Len() is one
// or less, or q is nil, then Rotate does nothing.
func (q *Deque[T]) Rotate(n int) {
if q.Len() <= 1 {
return
}
// Rotating a multiple of q.count is same as no rotation.
n %= q.count
if n == 0 {
return
}
modBits := len(q.buf) - 1
// If no empty space in buffer, only move head and tail indexes.
if q.head == q.tail {
// Calculate new head and tail using bitwise modulus.
q.head = (q.head + n) & modBits
q.tail = q.head
return
}
var zero T
if n < 0 {
// Rotate back to front.
for ; n < 0; n++ {
// Calculate new head and tail using bitwise modulus.
q.head = (q.head - 1) & modBits
q.tail = (q.tail - 1) & modBits
// Put tail value at head and remove value at tail.
q.buf[q.head] = q.buf[q.tail]
q.buf[q.tail] = zero
}
return
}
// Rotate front to back.
for ; n > 0; n-- {
// Put head value at tail and remove value at head.
q.buf[q.tail] = q.buf[q.head]
q.buf[q.head] = zero
// Calculate new head and tail using bitwise modulus.
q.head = (q.head + 1) & modBits
q.tail = (q.tail + 1) & modBits
}
}
// Index returns the index into the Deque of the first item satisfying f(item),
// or -1 if none do. If q is nil, then -1 is always returned. Search is linear
// starting with index 0.
func (q *Deque[T]) Index(f func(T) bool) int {
if q.Len() > 0 {
modBits := len(q.buf) - 1
for i := 0; i < q.count; i++ {
if f(q.buf[(q.head+i)&modBits]) {
return i
}
}
}
return -1
}
// RIndex is the same as Index, but searches from Back to Front. The index
// returned is from Front to Back, where index 0 is the index of the item
// returned by Front().
func (q *Deque[T]) RIndex(f func(T) bool) int {
if q.Len() > 0 {
modBits := len(q.buf) - 1
for i := q.count - 1; i >= 0; i-- {
if f(q.buf[(q.head+i)&modBits]) {
return i
}
}
}
return -1
}
// Insert is used to insert an element into the middle of the queue, before the
// element at the specified index. Insert(0,e) is the same as PushFront(e) and
// Insert(Len(),e) is the same as PushBack(e). Accepts only non-negative index
// values, and panics if index is out of range.
//
// Important: Deque is optimized for O(1) operations at the ends of the queue,
// not for operations in the the middle. Complexity of this function is
// constant plus linear in the lesser of the distances between the index and
// either of the ends of the queue.
func (q *Deque[T]) Insert(at int, item T) {
if at < 0 || at > q.count {
panic(outOfRangeText(at, q.Len()))
}
if at*2 < q.count {
q.PushFront(item)
front := q.head
for i := 0; i < at; i++ {
next := q.next(front)
q.buf[front], q.buf[next] = q.buf[next], q.buf[front]
front = next
}
return
}
swaps := q.count - at
q.PushBack(item)
back := q.prev(q.tail)
for i := 0; i < swaps; i++ {
prev := q.prev(back)
q.buf[back], q.buf[prev] = q.buf[prev], q.buf[back]
back = prev
}
}
// Remove removes and returns an element from the middle of the queue, at the
// specified index. Remove(0) is the same as PopFront() and Remove(Len()-1) is
// the same as PopBack(). Accepts only non-negative index values, and panics if
// index is out of range.
//
// Important: Deque is optimized for O(1) operations at the ends of the queue,
// not for operations in the the middle. Complexity of this function is
// constant plus linear in the lesser of the distances between the index and
// either of the ends of the queue.
func (q *Deque[T]) Remove(at int) T {
if at < 0 || at >= q.Len() {
panic(outOfRangeText(at, q.Len()))
}
rm := (q.head + at) & (len(q.buf) - 1)
if at*2 < q.count {
for i := 0; i < at; i++ {
prev := q.prev(rm)
q.buf[prev], q.buf[rm] = q.buf[rm], q.buf[prev]
rm = prev
}
return q.PopFront()
}
swaps := q.count - at - 1
for i := 0; i < swaps; i++ {
next := q.next(rm)
q.buf[rm], q.buf[next] = q.buf[next], q.buf[rm]
rm = next
}
return q.PopBack()
}
// SetMinCapacity sets a minimum capacity of 2^minCapacityExp. If the value of
// the minimum capacity is less than or equal to the minimum allowed, then
// capacity is set to the minimum allowed. This may be called at anytime to set
// a new minimum capacity.
//
// Setting a larger minimum capacity may be used to prevent resizing when the
// number of stored items changes frequently across a wide range.
func (q *Deque[T]) SetMinCapacity(minCapacityExp uint) {
if 1<<minCapacityExp > minCapacity {
q.minCap = 1 << minCapacityExp
} else {
q.minCap = minCapacity
}
}
// prev returns the previous buffer position wrapping around buffer.
func (q *Deque[T]) prev(i int) int {
return (i - 1) & (len(q.buf) - 1) // bitwise modulus
}
// next returns the next buffer position wrapping around buffer.
func (q *Deque[T]) next(i int) int {
return (i + 1) & (len(q.buf) - 1) // bitwise modulus
}
// growIfFull resizes up if the buffer is full.
func (q *Deque[T]) growIfFull() {
if q.count != len(q.buf) {
return
}
if len(q.buf) == 0 {
if q.minCap == 0 {
q.minCap = minCapacity
}
q.buf = make([]T, q.minCap)
return
}
q.resize()
}
// shrinkIfExcess resize down if the buffer 1/4 full.
func (q *Deque[T]) shrinkIfExcess() {
if len(q.buf) > q.minCap && (q.count<<2) == len(q.buf) {
q.resize()
}
}
// resize resizes the deque to fit exactly twice its current contents. This is
// used to grow the queue when it is full, and also to shrink it when it is
// only a quarter full.
func (q *Deque[T]) resize() {
newBuf := make([]T, q.count<<1)
if q.tail > q.head {
copy(newBuf, q.buf[q.head:q.tail])
} else {
n := copy(newBuf, q.buf[q.head:])
copy(newBuf[n:], q.buf[:q.tail])
}
q.head = 0
q.tail = q.count
q.buf = newBuf
}
func outOfRangeText(i, len int) string {
return fmt.Sprintf("deque: index out of range %d with length %d", i, len)
}
|