1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Copyright 2019-2022 Graham Clark. All rights reserved. Use of this source code is governed by the MIT license
// that can be found in the LICENSE file.
// Package gwutil provides general-purpose utilities that are not used by
// the core of gowid but that have proved useful for several pre-canned
// widgets.
package gwutil
import (
"errors"
"fmt"
"math"
"os"
"runtime/pprof"
"sort"
log "github.com/sirupsen/logrus"
)
//======================================================================
// Min returns the smaller of >1 integer arguments.
func Min(i int, js ...int) int {
res := i
for _, j := range js {
if j < res {
res = j
}
}
return res
}
// Min returns the larger of >1 integer arguments.
func Max(i int, js ...int) int {
res := i
for _, j := range js {
if j > res {
res = j
}
}
return res
}
// LimitTo is a one-liner that uses Min and Max to bound a value. Assumes
// a <= b.
func LimitTo(a, v, b int) int {
if v < a {
return a
}
if v > b {
return b
}
return v
}
// StringOfLength returns a string consisting of n runes.
func StringOfLength(r rune, n int) string {
res := make([]rune, n)
for i := 0; i < n; i++ {
res[i] = r
}
return string(res)
}
// Map is the traditional functional map function for strings.
func Map(vs []string, f func(string) string) []string {
vsm := make([]string, len(vs))
for i, v := range vs {
vsm[i] = f(v)
}
return vsm
}
// IPow returns a raised to the bth power.
func IPow(a, b int) int {
var result int = 1
for 0 != b {
if 0 != (b & 1) {
result *= a
}
b >>= 1
a *= a
}
return result
}
// Sum is a variadic function that returns the sum of its integer arguments.
func Sum(input ...int) int {
sum := 0
for i := range input {
sum += input[i]
}
return sum
}
//======================================================================
type fract struct {
fp float64
idx int
}
type fractlist []fract
func (slice fractlist) Len() int {
return len(slice)
}
// Note > to skip the reverse
func (slice fractlist) Less(i, j int) bool {
return slice[i].fp > slice[j].fp
}
func (slice fractlist) Swap(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
}
// HamiltonAllocation implements the Hamilton Method (Largest remainder method) to calculate
// integral ratios. (Like it is used in some elections.)
//
// This is shamelessly cribbed from https://excess.org/svn/urwid/contrib/trunk/rbreu_scrollbar.py
//
// counts -- list of integers ('votes per party')
// alloc -- total amount to be allocated ('total amount of seats')
//
func HamiltonAllocation(counts []int, alloc int) []int {
totalCounts := Sum(counts...)
if totalCounts == 0 {
return counts
}
res := make([]int, len(counts))
quotas := make([]float64, len(counts))
fracts := fractlist(make([]fract, len(counts)))
for i, c := range counts {
quotas[i] = (float64(c) * float64(alloc)) / float64(totalCounts)
}
for i, fp := range quotas {
_, f := math.Modf(fp)
fracts[i] = fract{fp: f, idx: i}
}
sort.Sort(fracts)
for i, fp := range quotas {
n, _ := math.Modf(fp)
res[i] = int(n)
}
remainder := alloc - Sum(res...)
for i := 0; i < remainder; i++ {
res[fracts[i].idx] += 1
}
return res
}
//======================================================================
// LStripByte returns a slice of its first argument which contains all
// bytes up to but not including its second argument.
func LStripByte(data []byte, s byte) []byte {
var i int
for i = 0; i < len(data); i++ {
if data[i] != s {
break
}
}
return data[i:]
}
//======================================================================
type IOption interface {
IsNone() bool
Value() interface{}
}
// For fmt.Stringer
func OptionString(opt IOption) string {
if opt.IsNone() {
return "None"
} else {
return fmt.Sprintf("%v", opt.Value())
}
}
//======================================================================
// IntOption is intended to represent an Option[int]
type IntOption struct {
some bool
val int
}
var _ fmt.Stringer = IntOption{}
var _ IOption = IntOption{}
func SomeInt(x int) IntOption {
return IntOption{true, x}
}
func NoneInt() IntOption {
return IntOption{}
}
func (i IntOption) IsNone() bool {
return !i.some
}
func (i IntOption) Value() interface{} {
return i.Val()
}
func (i IntOption) Val() int {
if i.IsNone() {
panic(errors.New("Called Val on empty IntOption"))
}
return i.val
}
// For fmt.Stringer
func (i IntOption) String() string {
return OptionString(i)
}
//======================================================================
// Int64Option is intended to represent an Option[int]
type Int64Option struct {
some bool
val int64
}
var _ fmt.Stringer = Int64Option{}
var _ IOption = Int64Option{}
func SomeInt64(x int64) Int64Option {
return Int64Option{true, x}
}
func NoneInt64() Int64Option {
return Int64Option{}
}
func (i Int64Option) IsNone() bool {
return !i.some
}
func (i Int64Option) Value() interface{} {
return i.Val()
}
func (i Int64Option) Val() int64 {
if i.IsNone() {
panic(errors.New("Called Val on empty Int64Option"))
}
return i.val
}
// For fmt.Stringer
func (i Int64Option) String() string {
return OptionString(i)
}
//======================================================================
// RuneOption is intended to represent an Option[rune]
type RuneOption struct {
some bool
val rune
}
var _ fmt.Stringer = RuneOption{}
var _ IOption = RuneOption{}
func SomeRune(x rune) RuneOption {
return RuneOption{true, x}
}
func NoneRune() RuneOption {
return RuneOption{}
}
func (i RuneOption) IsNone() bool {
return !i.some
}
func (i RuneOption) Value() interface{} {
return i.Val()
}
func (i RuneOption) Val() rune {
if i.IsNone() {
panic(errors.New("Called Val on empty ByteOption"))
}
return i.val
}
func (i RuneOption) String() string {
return OptionString(i)
}
//======================================================================
const float64EqualityThreshold = 1e-5
// AlmostEqual returns true if its two arguments are within 1e-5 of each other.
func AlmostEqual(a, b float64) bool {
return math.Abs(a-b) <= float64EqualityThreshold
}
// Round returns a float64 representing the closest whole number
// to the supplied float64 argument.
func Round(f float64) float64 {
if f < 0 {
return math.Ceil(f - 0.5)
} else {
return math.Floor(f + 0.5)
}
}
// RoundFloatToInt returns an int representing the closest int to the
// supplied float, rounding up or down.
func RoundFloatToInt(val float32) int {
if val < 0 {
return int(val - 0.5)
}
return int(val + 0.5)
}
//======================================================================
// If is a convenience function for mimicking a ternary operator e.g. If(x<y, x, y).(int)
func If(statement bool, a, b interface{}) interface{} {
if statement {
return a
}
return b
}
//======================================================================
// StartProfilingCPU is a function I used when debugging and optimizing gowid. It starts
// the Go-profiler with output going to the specified file.
func StartProfilingCPU(filename string) {
f, err := os.Create(filename)
if err != nil {
log.Fatal(err)
}
if err = pprof.StartCPUProfile(f); err != nil {
panic(err)
}
}
// StopProfilingCPU will stop the CPU profiler.
func StopProfilingCPU() {
pprof.StopCPUProfile()
}
//======================================================================
// ProfileHeap is a function I used when debugging and optimizing gowid. It
// writes a Go-heap-profile to the filename specified.
func ProfileHeap(filename string) {
f, err := os.Create(filename)
if err != nil {
log.Fatal(err)
}
defer f.Close()
if err = pprof.WriteHeapProfile(f); err != nil {
panic(err)
}
}
//======================================================================
// Local Variables:
// mode: Go
// fill-column: 110
// End:
|