1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
[](https://pkg.go.dev/github.com/go-crypt/crypt)
[](https://goreportcard.com/report/github.com/go-crypt/crypt)
# github.com/go-crypt/crypt
Password Hashing / Digest / Crypt library.
## Intent
This library aims to provide a convenient layer over the go password hashing crypto functions.
## Tasks
A list of tasks that need to be accomplished are listed in the
[General Project](https://github.com/orgs/go-crypt/projects/1).
## Algorithms
### Supported
| Algorithm | Variants | Identifiers |
|:----------------------------------------------------------------------------:|:------------------------------------:|:-------------------------------------------------------------------------------------------:|
| [Argon2](https://www.rfc-editor.org/rfc/rfc9106.html) | Argon2id, Argon2i, Argon2d | `argon2id`, `argon2i`, `argon2d` |
| [SHA-crypt](https://www.akkadia.org/drepper/SHA-crypt.txt) | SHA256, SHA512 | `5`, `6` |
| PBKDF2 | SHA1, SHA224, SHA256, SHA384, SHA512 | `pbkdf2`, `pbkdf2-sha1`, `pbkdf2-sha224`, `pbkdf2-sha256`, `pbkdf2-sha384`, `pbkdf2-sha512` |
| [bcrypt](https://www.usenix.org/legacy/event/usenix99/provos/provos_html/) | bcrypt, bcrypt-sha256 | `2`, `2a`, `2b`, `2x`, `2y`, `bcrypt-sha256` |
| [scrypt](https://www.rfc-editor.org/rfc/rfc7914.html) | scrypt, yescrypt | `scrypt`, `y` |
| md5crypt | standard, sun | `1`, `md5` |
| sha1crypt | standard | `sha1` |
| [PlainText](#plain-text-format) | plaintext, base64 | `plaintext`, `base64` |
#### Plain Text Format
In addition to the standard crypt functions we also support a plain text storage format which has a regular plain text
variant and a Base64 format (for storage, not security).
The [PHC string format] we decided to use is as follows:
```
$<id>$<data>
```
Where `id` is either `plaintext` or `base64`, and `data` is either the password string or the
[Base64 (Adapted)](#base64-adapted) encoded string.
#### bcrypt-sha256
This algorithm was thought of by the developers of [Passlib]. It circumvents the issue in bcrypt where the maximum
password length is effectively 72 bytes by passing the password via a HMAC-SHA-256 function which uses the salt bytes as
the key.
*__Note:__ Only bcrypt-sha256 version 2 which uses the [PHC string format] and passes the password through
a HMAC-SHA-256 function the salt as the key is supported. The bcrypt-sha256 version 1 which uses the
[Modular Crypt Format] and only passes the password via a SHA-256 sum function not supported at all.*
[Passlib]: https://passlib.readthedocs.io/en/stable/
[PHC string format]: https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md
[Modular Crypt Format]: https://passlib.readthedocs.io/en/stable/modular_crypt_format.html
### Possible Future Support
| Algorithm | Reasoning |
|:---------------:|:-----------------------------------------------------:|
| Type 7 (cisco) | Explicit Backwards Compatibility and Interoperability |
| Type 8 (cisco) | Explicit Backwards Compatibility and Interoperability |
| Type 9 (cisco) | Explicit Backwards Compatibility and Interoperability |
| Type 10 (cisco) | Explicit Backwards Compatibility and Interoperability |
| LDAP RFC2307 | Explicit Backwards Compatibility and Interoperability |
Additional support for LDAP specific formats is also very likely, either via normalization and encoding options or via
explicit algorithm variants and/or specific algorithms.
## Base64 (Adapted)
Many password storage formats use Base64 with an Adapted charset to store the bytes of the salt or hash key. This uses
the standard Base64 encoding without padding as per [RFC4648 section 4] but replaces the `+` chars with a `.`.
[RFC4648 section 4]: https://datatracker.ietf.org/doc/html/rfc4648#section-4
## Installation
Use `go get` to add this module to your project with `go get github.com/go-crypt/crypt`.
### Requirements
- go 1.23+
## Usage
The following examples show how easy it is to interact with the argon2 algorithm. Most other algorithm implementations
are relatively similar.
### Functional Options Pattern
The `algorithm.Hasher` implementations use a functional options pattern. This pattern is accessible via the `New`
function in each algorithm package or via a receiver function of the individual `algorithm.Hasher` implementation called
`WithOptions`.
Most algorithm implementations have at least the following functional option signatures:
- `WithVariant(variant Variant) Opt`
- `WithVariantName(identifier string) Opt`
- `WithIterations(iterations int) Opt`
With the exception of `WithVariantName` which takes a string, and `WithVariant` which takes a `Variant` type (which is
technically a int), nearly every functional option takes a single `int`. There are a few functional options which take
a single `uint32` where the maximum value exceeds the maximum value for an untyped int on 32bit architectures.
If the `uint32` methods are an issue for anyone using this module we suggest opening an issue and describing why and we'll
consider adding another functional option which takes an `int`.
### Creating a Decoder
While several convenience functions exist for building password decoders and checking individual passwords it is
*__STRONGLY RECOMMENDED__* that users implementing this library explicitly create a decoder that fits their particular
use case after sufficiently researching each algorithm and their benefits. At the time of this writing we strongly
recommend the `argon2id` variant of `argon2`.
This can be done via the `crypt.NewDecoder` function as shown below.
```go
package main
import (
"fmt"
"github.com/go-crypt/crypt"
"github.com/go-crypt/crypt/algorithm"
"github.com/go-crypt/crypt/algorithm/argon2"
)
func main() {
var (
decoder *crypt.Decoder
err error
digest algorithm.Digest
)
if decoder, err = NewDecoderArgon2idOnly(); err != nil {
panic(err)
}
if digest, err = decoder.Decode("$argon2id$v=19$m=2097152,t=1,p=4$BjVeoTI4ntTQc0WkFQdLWg$OAUnkkyx5STI0Ixl+OSpv4JnI6J1TYWKuCuvIbUGHTY"); err != nil {
panic(err)
}
fmt.Printf("Digest Matches Password 'example': %t\n", digest.Match("example"))
fmt.Printf("Digest Matches Password 'invalid': %t\n", digest.Match("invalid"))
}
// NewDecoderArgon2idOnly returns a decoder which can only decode argon2id encoded digests.
func NewDecoderArgon2idOnly() (decoder *crypt.Decoder, err error) {
decoder = crypt.NewDecoder()
if err = argon2.RegisterDecoderArgon2id(decoder); err != nil {
return nil, err
}
return decoder, nil
}
```
### Decoding a Password and Validating It
This method of checking passwords is recommended if you have a database of hashes which are going to live in memory. The
`crypt.Digest` and `crypt.NullDigest` types provide helpful interface implementations to simplify Marshal/Unmarshal and
database operations.
```go
package main
import (
"fmt"
"github.com/go-crypt/crypt"
"github.com/go-crypt/crypt/algorithm"
)
func main() {
var (
decoder *crypt.Decoder
err error
digest algorithm.Digest
)
if decoder, err = crypt.NewDefaultDecoder(); err != nil {
panic(err)
}
if digest, err = decoder.Decode("$argon2id$v=19$m=2097152,t=1,p=4$BjVeoTI4ntTQc0WkFQdLWg$OAUnkkyx5STI0Ixl+OSpv4JnI6J1TYWKuCuvIbUGHTY"); err != nil {
panic(err)
}
fmt.Printf("Digest Matches Password 'example': %t\n", digest.Match("example"))
fmt.Printf("Digest Matches Password 'invalid': %t\n", digest.Match("invalid"))
}
```
### Checking a Password Against a Hash
This method of checking passwords is quick and dirty and most useful when users are providing the hash as the input such
as in situations where you are allowing them to check a password themselves via a CLI or otherwise.
```go
package main
import (
"fmt"
"github.com/go-crypt/crypt"
)
func main() {
var (
valid bool
err error
)
if valid, err = crypt.CheckPassword("example","$argon2id$v=19$m=2097152,t=1,p=4$BjVeoTI4ntTQc0WkFQdLWg$OAUnkkyx5STI0Ixl+OSpv4JnI6J1TYWKuCuvIbUGHTY"); err != nil {
panic(err)
}
fmt.Printf("Digest Matches Password 'example': %t\n", valid)
if valid, err = crypt.CheckPassword("invalid","$argon2id$v=19$m=2097152,t=1,p=4$BjVeoTI4ntTQc0WkFQdLWg$OAUnkkyx5STI0Ixl+OSpv4JnI6J1TYWKuCuvIbUGHTY"); err != nil {
panic(err)
}
fmt.Printf("Digest Matches Password 'invalid': %t\n", valid)
}
```
### Generating an Encoded Digest from a Password
```go
package main
import (
"fmt"
"github.com/go-crypt/crypt/algorithm"
"github.com/go-crypt/crypt/algorithm/argon2"
)
func main() {
var (
hasher *argon2.Hasher
err error
digest algorithm.Digest
)
if hasher, err = argon2.New(
argon2.WithProfileRFC9106LowMemory(),
); err != nil {
panic(err)
}
if digest, err = hasher.Hash("example"); err != nil {
panic(err)
}
fmt.Printf("Encoded Digest With Password 'example': %s\n", digest.Encode())
}
```
|