1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// +build linux
// +build amd64
package fakemachine
import (
"fmt"
"io/ioutil"
"os"
"os/exec"
"path"
"golang.org/x/sys/unix"
)
type umlBackend struct {
machine *Machine
}
func newUmlBackend(m *Machine) umlBackend {
return umlBackend{machine: m}
}
func (b umlBackend) Name() string {
return "uml"
}
func (b umlBackend) Supported() (bool, error) {
// check the kernel exists
_, _, err := b.KernelPath()
if err != nil {
return false, err
}
// check the slirp helper exists exec.LookPath
if _, err := b.SlirpHelperPath(); err != nil {
return false, fmt.Errorf("libslirp-helper not installed")
}
return true, nil
}
func (b umlBackend) KernelPath() (string, string, error) {
// find the UML binary
kernelPath, err := exec.LookPath("linux.uml")
if err != nil {
return "", "", fmt.Errorf("user-mode-linux not installed")
}
// make sure the UML modules exist
// on non-merged usr systems the modules still reside under /usr/lib/uml
moddir := "/usr/lib/uml/modules"
if _, err := os.Stat(moddir); err != nil {
return "", "", fmt.Errorf("user-mode-linux modules not installed")
}
// find the subdirectory containing the modules for the UML release
modSubdirs, err := ioutil.ReadDir(moddir)
if err != nil {
return "", "", err
}
if len(modSubdirs) != 1 {
return "", "", fmt.Errorf("could not determine which user-mode-linux modules to use")
}
moddir = path.Join(moddir, modSubdirs[0].Name())
return kernelPath, moddir, nil
}
func (b umlBackend) SlirpHelperPath() (string, error) {
return exec.LookPath("libslirp-helper")
}
func (b umlBackend) InitrdModules() []string {
return []string{}
}
func (b umlBackend) UdevRules() []string {
udevRules := []string{}
// create symlink under /dev/disk/by-fakemachine-label/ for each virtual image
for i, img := range b.machine.images {
driveLetter := 'a' + i
udevRules = append(udevRules,
fmt.Sprintf(`KERNEL=="ubd%c", SYMLINK+="disk/by-fakemachine-label/%s"`, driveLetter, img.label),
fmt.Sprintf(`KERNEL=="ubd%c[0-9]", SYMLINK+="disk/by-fakemachine-label/%s-part%%n"`, driveLetter, img.label))
}
return udevRules
}
func (b umlBackend) NetworkdMatch() string {
return "vec*"
}
func (b umlBackend) JobOutputTTY() string {
// Send the fakemachine job output to the right console
if b.machine.showBoot {
return "/dev/tty0"
}
return "/dev/tty1"
}
func (b umlBackend) MountParameters(mount mountPoint) (fstype string, options []string) {
fstype = "hostfs"
options = []string{mount.hostDirectory}
return
}
func (b umlBackend) InitModules() []string {
return []string{}
}
func (b umlBackend) InitStaticVolumes() []mountPoint {
// mount the UML modules over the top of /lib/modules
// which currently contains the modules from the base system
_, moddir, _ := b.KernelPath()
moddir = path.Join(moddir, "../")
machineDir := "/lib/modules"
if mergedUsrSystem() {
machineDir = "/usr/lib/modules"
}
moduleVolume := mountPoint{moddir, machineDir, "modules", true}
return []mountPoint{moduleVolume}
}
func (b umlBackend) Start() (bool, error) {
m := b.machine
kernelPath, _, err := b.KernelPath()
if err != nil {
return false, err
}
slirpHelperPath, err := b.SlirpHelperPath()
if err != nil {
return false, err
}
/* for networking we use the UML vector transport alongside the
* libslirp-helper on the host. This works by creating a pair of
* connected sockets on the host using the socketpair syscall, which
* returns two file descriptors. One of the sockets is attached to the
* UML process and the other socket is attached to the libslirp-helper
* process allowing communication between the two processes.
* It doesn't matter the order in which the sockets are connected to
* the processes.
*/
netSocketpair, err := unix.Socketpair(unix.AF_UNIX, unix.SOCK_DGRAM, 0)
if err != nil {
return false, err
}
// one of the sockets will be attached to the slirp-helper
slirpHelperSocket := os.NewFile(uintptr(netSocketpair[0]), "")
if slirpHelperSocket == nil {
return false, fmt.Errorf("Creation of slirpHelperSocket failed")
}
defer slirpHelperSocket.Close()
// while the other socket will be attached to the uml guest
umlVectorTransportSocket := os.NewFile(uintptr(netSocketpair[1]), "")
if umlVectorTransportSocket == nil {
return false, fmt.Errorf("creation of umlVectorTransportSocket failed")
}
defer umlVectorTransportSocket.Close()
// launch libslirp-helper
slirpHelperArgs := []string{"libslirp-helper",
"--exit-with-parent"}
/* attach the slirpHelperSocket as an additional fd to the process,
* after std*. The helper then bridges the host network to the attached
* file descriptor using the --fd argument. Since the standard std*
* file descriptors are passed to the libslirp-helper --fd should
* always be set to 3.
*/
slirpHelperAttr := &os.ProcAttr{
Files: []*os.File{os.Stdin, os.Stdout, os.Stderr, slirpHelperSocket},
}
slirpHelperArgs = append(slirpHelperArgs, "--fd=3")
slirpHelper, err := os.StartProcess(slirpHelperPath, slirpHelperArgs, slirpHelperAttr)
if err != nil {
return false, err
}
defer slirpHelper.Kill()
// launch uml guest
memory := fmt.Sprintf("%d", m.memory)
umlargs := []string{"linux",
"mem=" + memory + "M",
"initrd=" + m.initrdpath,
"panic=-1",
"nosplash",
"systemd.unit=fakemachine.service",
"console=tty0",
}
/* umlVectorTransportSocket is attached as an additional fd to the process,
* after the std* file descriptors. Setup a vector device inside the guest
* which uses fd transport with the 3rd file descriptor attached to the
* UML process.
*/
umlAttr := &os.ProcAttr{
Files: []*os.File{os.Stdin, os.Stdout, os.Stderr, umlVectorTransportSocket},
}
umlargs = append(umlargs, "vec0:transport=fd,fd=3,vec=0")
if m.showBoot {
// Create a character device representing our stdio
// file descriptors, and connect the emulated serial
// port (which is the console device for the BIOS,
// Linux and systemd, and is also connected to the
// fakemachine script) to that device
umlargs = append(umlargs,
"con0=fd:0,fd:1", // tty0 to stdin/stdout when showing boot
"con=none") // no other consoles
} else {
// don't show the UML message output by default
umlargs = append(umlargs, "quiet")
umlargs = append(umlargs,
"con1=fd:0,fd:1",
"con0=null",
"con=none") // no other consoles
}
for i, img := range m.images {
umlargs = append(umlargs,
fmt.Sprintf("ubd%d=%s", i, img.path))
}
p, err := os.StartProcess(kernelPath, umlargs, umlAttr)
if err != nil {
return false, err
}
// wait for uml process to exit
ustate, err := p.Wait()
if err != nil {
return false, err
}
return ustate.Success(), nil
}
|