File: wmh.go

package info (click to toggle)
golang-github-go-enry-go-license-detector 4.3.0%2Bgit20221007.a3a1cc6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,068 kB
  • sloc: makefile: 25
file content (197 lines) | stat: -rw-r--r-- 5,995 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
package wmh

import (
	"encoding/binary"
	"errors"
	"log"
	"math"
	"reflect"
	"unsafe"

	"github.com/go-enry/go-license-detector/v4/licensedb/internal/fastlog"
	"golang.org/x/exp/rand"
	"gonum.org/v1/gonum/stat/distuv"
)

const maxUint16 = 65535

// WeightedMinHasher calculates Weighted MinHash-es.
// https://ekzhu.github.io/datasketch/weightedminhash.html
type WeightedMinHasher struct {
	// Size of each hash element in bits. Supported values are 16, 32 and 64.
	Bitness int

	dim        int
	sampleSize int
	rs         [][]float32
	lnCs       [][]float32
	betas      [][]uint16 // attempt to save some memory - [0, 1] is scaled to maxUint16
}

// NewWeightedMinHasher initializes a new instance of WeightedMinHasher.
// `dim` is the bag size.
// `sampleSize` is the hash length.
// `seed` is the random generator seed, as Weighted MinHash is probabilistic.
func NewWeightedMinHasher(dim int, sampleSize int, seed int64) *WeightedMinHasher {
	randSrc := rand.New(rand.NewSource(uint64(seed)))
	gammaGen := distuv.Gamma{Alpha: 2, Beta: 1, Src: randSrc}
	hasher := &WeightedMinHasher{Bitness: 64, dim: dim, sampleSize: sampleSize}
	hasher.rs = make([][]float32, sampleSize)
	for y := 0; y < sampleSize; y++ {
		arr := make([]float32, dim)
		hasher.rs[y] = arr
		for x := 0; x < dim; x++ {
			arr[x] = float32(gammaGen.Rand())
		}
	}
	hasher.lnCs = make([][]float32, sampleSize)
	for y := 0; y < sampleSize; y++ {
		arr := make([]float32, dim)
		hasher.lnCs[y] = arr
		for x := 0; x < dim; x++ {
			arr[x] = fastlog.Log(float32(gammaGen.Rand()))
		}
	}
	uniformGen := distuv.Uniform{Min: 0, Max: 1, Src: randSrc}
	hasher.betas = make([][]uint16, sampleSize)
	for y := 0; y < sampleSize; y++ {
		arr := make([]uint16, dim)
		hasher.betas[y] = arr
		for x := 0; x < dim; x++ {
			arr[x] = uint16(uniformGen.Rand() * maxUint16)
		}
	}
	return hasher
}

// MarshalBinary serializes the WeightedMinHasher.
func (wmh *WeightedMinHasher) MarshalBinary() (data []byte, err error) {
	data = make([]byte, 9+wmh.sampleSize*wmh.dim*(4*2+2))
	data[0] = byte(wmh.Bitness)
	binary.LittleEndian.PutUint32(data[1:5], uint32(wmh.dim))
	binary.LittleEndian.PutUint32(data[5:9], uint32(wmh.sampleSize))
	offset := 9
	writeFloat32Slice := func(arr []float32) {
		header := (*reflect.SliceHeader)(unsafe.Pointer(&arr))
		header.Len *= 4
		header.Cap *= 4
		buffer := *(*[]byte)(unsafe.Pointer(header))
		copy(data[offset:], buffer)
		offset += len(buffer)
	}
	for _, arr := range wmh.rs {
		writeFloat32Slice(arr)
	}
	for _, arr := range wmh.lnCs {
		writeFloat32Slice(arr)
	}
	for _, arr := range wmh.betas {
		header := (*reflect.SliceHeader)(unsafe.Pointer(&arr))
		header.Len *= 2
		header.Cap *= 2
		buffer := *(*[]byte)(unsafe.Pointer(header))
		copy(data[offset:], buffer)
		offset += len(buffer)
	}
	return data, nil
}

// UnmarshalBinary reads a WeightedMinHasher previously serialized with MarshalBinary().
func (wmh *WeightedMinHasher) UnmarshalBinary(data []byte) error {
	if len(data) < 9 {
		return errors.New("invalid binary format: no header")
	}
	wmh.Bitness = int(data[0])
	wmh.dim = int(binary.LittleEndian.Uint32(data[1:5]))
	wmh.sampleSize = int(binary.LittleEndian.Uint32(data[5:9]))
	if len(data)-9 != wmh.sampleSize*wmh.dim*(4*2+2) {
		return errors.New("invalid binary format: body size mismatch")
	}
	wmh.rs = make([][]float32, wmh.sampleSize)
	wmh.lnCs = make([][]float32, wmh.sampleSize)
	wmh.betas = make([][]uint16, wmh.sampleSize)
	readFloat32Slice := func(dest []float32, src []byte) {
		header := (*reflect.SliceHeader)(unsafe.Pointer(&src))
		header.Len /= 4
		header.Cap /= 4
		buffer := *(*[]float32)(unsafe.Pointer(header))
		copy(dest, buffer)
	}
	offset := 9
	for i := range wmh.rs {
		wmh.rs[i] = make([]float32, wmh.dim)
		nextOffset := offset + wmh.dim*4
		readFloat32Slice(wmh.rs[i], data[offset:nextOffset])
		offset = nextOffset
	}
	for i := range wmh.lnCs {
		wmh.lnCs[i] = make([]float32, wmh.dim)
		nextOffset := offset + wmh.dim*4
		readFloat32Slice(wmh.lnCs[i], data[offset:nextOffset])
		offset = nextOffset
	}
	for i := range wmh.betas {
		wmh.betas[i] = make([]uint16, wmh.dim)
		nextOffset := offset + wmh.dim*2
		slice := data[offset:nextOffset]
		header := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
		header.Len /= 2
		header.Cap /= 2
		buffer := *(*[]uint16)(unsafe.Pointer(header))
		copy(wmh.betas[i], buffer)
		offset = nextOffset
	}
	return nil
}

// Hash calculates the Weighted MinHash from the weighted bag of features.
// Each feature has an index and a value.
func (wmh *WeightedMinHasher) Hash(values []float32, indices []int) []uint64 {
	if len(values) != len(indices) {
		log.Panicf("len(values)=%d is not equal to len(indices)=%d", len(values), len(indices))
	}
	for i, v := range values {
		if v < 0 {
			log.Panicf("negative value in the vector: %f @ %d", v, i)
		}
	}
	for vi, j := range indices {
		if j >= wmh.dim {
			log.Panicf("index is out of range: %d @ %d", j, vi)
		}
	}
	hashvalues := make([]uint64, wmh.sampleSize)
	for s := 0; s < wmh.sampleSize; s++ {
		minLnA := float32(math.MaxFloat32)
		var k int
		var minT float32
		for vi, j := range indices {
			vlog := fastlog.Log(values[vi])
			beta := float32(wmh.betas[s][j]) / float32(maxUint16)
			// t = np.floor((vlog / self.rs[i]) + self.betas[i])
			t := float32(math.Floor(float64(vlog/wmh.rs[s][j] + beta)))
			// ln_y = (t - self.betas[i]) * self.rs[i]
			lnY := (t - beta) * wmh.rs[s][j]
			// ln_a = self.ln_cs[i] - ln_y - self.rs[i]
			lnA := wmh.lnCs[s][j] - lnY - wmh.rs[s][j]
			// k = np.nanargmin(ln_a)
			if lnA < minLnA {
				minLnA = lnA
				k = j
				minT = t
			}
		}
		// hashvalues[i][0], hashvalues[i][1] = k, int(t[k])
		switch wmh.Bitness {
		case 64:
			hashvalues[s] = uint64(uint64(k) | (uint64(minT) << 32))
		case 32:
			hashvalues[s] = uint64(uint32(k) | (uint32(minT) << 16))
		case 16:
			hashvalues[s] = uint64(uint16(k) | (uint16(minT) << 8))
		default:
			log.Fatalf("unsupported bitness value: %d", wmh.Bitness)
		}
	}
	return hashvalues
}