1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
package wmh
import (
"encoding/binary"
"errors"
"log"
"math"
"reflect"
"unsafe"
"github.com/go-enry/go-license-detector/v4/licensedb/internal/fastlog"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
const maxUint16 = 65535
// WeightedMinHasher calculates Weighted MinHash-es.
// https://ekzhu.github.io/datasketch/weightedminhash.html
type WeightedMinHasher struct {
// Size of each hash element in bits. Supported values are 16, 32 and 64.
Bitness int
dim int
sampleSize int
rs [][]float32
lnCs [][]float32
betas [][]uint16 // attempt to save some memory - [0, 1] is scaled to maxUint16
}
// NewWeightedMinHasher initializes a new instance of WeightedMinHasher.
// `dim` is the bag size.
// `sampleSize` is the hash length.
// `seed` is the random generator seed, as Weighted MinHash is probabilistic.
func NewWeightedMinHasher(dim int, sampleSize int, seed int64) *WeightedMinHasher {
randSrc := rand.New(rand.NewSource(uint64(seed)))
gammaGen := distuv.Gamma{Alpha: 2, Beta: 1, Src: randSrc}
hasher := &WeightedMinHasher{Bitness: 64, dim: dim, sampleSize: sampleSize}
hasher.rs = make([][]float32, sampleSize)
for y := 0; y < sampleSize; y++ {
arr := make([]float32, dim)
hasher.rs[y] = arr
for x := 0; x < dim; x++ {
arr[x] = float32(gammaGen.Rand())
}
}
hasher.lnCs = make([][]float32, sampleSize)
for y := 0; y < sampleSize; y++ {
arr := make([]float32, dim)
hasher.lnCs[y] = arr
for x := 0; x < dim; x++ {
arr[x] = fastlog.Log(float32(gammaGen.Rand()))
}
}
uniformGen := distuv.Uniform{Min: 0, Max: 1, Src: randSrc}
hasher.betas = make([][]uint16, sampleSize)
for y := 0; y < sampleSize; y++ {
arr := make([]uint16, dim)
hasher.betas[y] = arr
for x := 0; x < dim; x++ {
arr[x] = uint16(uniformGen.Rand() * maxUint16)
}
}
return hasher
}
// MarshalBinary serializes the WeightedMinHasher.
func (wmh *WeightedMinHasher) MarshalBinary() (data []byte, err error) {
data = make([]byte, 9+wmh.sampleSize*wmh.dim*(4*2+2))
data[0] = byte(wmh.Bitness)
binary.LittleEndian.PutUint32(data[1:5], uint32(wmh.dim))
binary.LittleEndian.PutUint32(data[5:9], uint32(wmh.sampleSize))
offset := 9
writeFloat32Slice := func(arr []float32) {
header := (*reflect.SliceHeader)(unsafe.Pointer(&arr))
header.Len *= 4
header.Cap *= 4
buffer := *(*[]byte)(unsafe.Pointer(header))
copy(data[offset:], buffer)
offset += len(buffer)
}
for _, arr := range wmh.rs {
writeFloat32Slice(arr)
}
for _, arr := range wmh.lnCs {
writeFloat32Slice(arr)
}
for _, arr := range wmh.betas {
header := (*reflect.SliceHeader)(unsafe.Pointer(&arr))
header.Len *= 2
header.Cap *= 2
buffer := *(*[]byte)(unsafe.Pointer(header))
copy(data[offset:], buffer)
offset += len(buffer)
}
return data, nil
}
// UnmarshalBinary reads a WeightedMinHasher previously serialized with MarshalBinary().
func (wmh *WeightedMinHasher) UnmarshalBinary(data []byte) error {
if len(data) < 9 {
return errors.New("invalid binary format: no header")
}
wmh.Bitness = int(data[0])
wmh.dim = int(binary.LittleEndian.Uint32(data[1:5]))
wmh.sampleSize = int(binary.LittleEndian.Uint32(data[5:9]))
if len(data)-9 != wmh.sampleSize*wmh.dim*(4*2+2) {
return errors.New("invalid binary format: body size mismatch")
}
wmh.rs = make([][]float32, wmh.sampleSize)
wmh.lnCs = make([][]float32, wmh.sampleSize)
wmh.betas = make([][]uint16, wmh.sampleSize)
readFloat32Slice := func(dest []float32, src []byte) {
header := (*reflect.SliceHeader)(unsafe.Pointer(&src))
header.Len /= 4
header.Cap /= 4
buffer := *(*[]float32)(unsafe.Pointer(header))
copy(dest, buffer)
}
offset := 9
for i := range wmh.rs {
wmh.rs[i] = make([]float32, wmh.dim)
nextOffset := offset + wmh.dim*4
readFloat32Slice(wmh.rs[i], data[offset:nextOffset])
offset = nextOffset
}
for i := range wmh.lnCs {
wmh.lnCs[i] = make([]float32, wmh.dim)
nextOffset := offset + wmh.dim*4
readFloat32Slice(wmh.lnCs[i], data[offset:nextOffset])
offset = nextOffset
}
for i := range wmh.betas {
wmh.betas[i] = make([]uint16, wmh.dim)
nextOffset := offset + wmh.dim*2
slice := data[offset:nextOffset]
header := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
header.Len /= 2
header.Cap /= 2
buffer := *(*[]uint16)(unsafe.Pointer(header))
copy(wmh.betas[i], buffer)
offset = nextOffset
}
return nil
}
// Hash calculates the Weighted MinHash from the weighted bag of features.
// Each feature has an index and a value.
func (wmh *WeightedMinHasher) Hash(values []float32, indices []int) []uint64 {
if len(values) != len(indices) {
log.Panicf("len(values)=%d is not equal to len(indices)=%d", len(values), len(indices))
}
for i, v := range values {
if v < 0 {
log.Panicf("negative value in the vector: %f @ %d", v, i)
}
}
for vi, j := range indices {
if j >= wmh.dim {
log.Panicf("index is out of range: %d @ %d", j, vi)
}
}
hashvalues := make([]uint64, wmh.sampleSize)
for s := 0; s < wmh.sampleSize; s++ {
minLnA := float32(math.MaxFloat32)
var k int
var minT float32
for vi, j := range indices {
vlog := fastlog.Log(values[vi])
beta := float32(wmh.betas[s][j]) / float32(maxUint16)
// t = np.floor((vlog / self.rs[i]) + self.betas[i])
t := float32(math.Floor(float64(vlog/wmh.rs[s][j] + beta)))
// ln_y = (t - self.betas[i]) * self.rs[i]
lnY := (t - beta) * wmh.rs[s][j]
// ln_a = self.ln_cs[i] - ln_y - self.rs[i]
lnA := wmh.lnCs[s][j] - lnY - wmh.rs[s][j]
// k = np.nanargmin(ln_a)
if lnA < minLnA {
minLnA = lnA
k = j
minT = t
}
}
// hashvalues[i][0], hashvalues[i][1] = k, int(t[k])
switch wmh.Bitness {
case 64:
hashvalues[s] = uint64(uint64(k) | (uint64(minT) << 32))
case 32:
hashvalues[s] = uint64(uint32(k) | (uint32(minT) << 16))
case 16:
hashvalues[s] = uint64(uint16(k) | (uint16(minT) << 8))
default:
log.Fatalf("unsupported bitness value: %d", wmh.Bitness)
}
}
return hashvalues
}
|