1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
package v2
import (
"crypto"
"io"
"math"
"github.com/go-git/go-git/v5/plumbing"
"github.com/go-git/go-git/v5/plumbing/hash"
"github.com/go-git/go-git/v5/utils/binary"
)
// Encoder writes MemoryIndex structs to an output stream.
type Encoder struct {
io.Writer
hash hash.Hash
}
// NewEncoder returns a new stream encoder that writes to w.
func NewEncoder(w io.Writer) *Encoder {
h := hash.New(hash.CryptoType)
mw := io.MultiWriter(w, h)
return &Encoder{mw, h}
}
// Encode writes an index into the commit-graph file
func (e *Encoder) Encode(idx Index) error {
// Get all the hashes in the input index
hashes := idx.Hashes()
// Sort the inout and prepare helper structures we'll need for encoding
hashToIndex, fanout, extraEdgesCount, generationV2OverflowCount := e.prepare(idx, hashes)
chunkSignatures := [][]byte{OIDFanoutChunk.Signature(), OIDLookupChunk.Signature(), CommitDataChunk.Signature()}
chunkSizes := []uint64{szUint32 * lenFanout, uint64(len(hashes)) * hash.Size, uint64(len(hashes)) * (hash.Size + szCommitData)}
if extraEdgesCount > 0 {
chunkSignatures = append(chunkSignatures, ExtraEdgeListChunk.Signature())
chunkSizes = append(chunkSizes, uint64(extraEdgesCount)*szUint32)
}
if idx.HasGenerationV2() {
chunkSignatures = append(chunkSignatures, GenerationDataChunk.Signature())
chunkSizes = append(chunkSizes, uint64(len(hashes))*szUint32)
if generationV2OverflowCount > 0 {
chunkSignatures = append(chunkSignatures, GenerationDataOverflowChunk.Signature())
chunkSizes = append(chunkSizes, uint64(generationV2OverflowCount)*szUint64)
}
}
if err := e.encodeFileHeader(len(chunkSignatures)); err != nil {
return err
}
if err := e.encodeChunkHeaders(chunkSignatures, chunkSizes); err != nil {
return err
}
if err := e.encodeFanout(fanout); err != nil {
return err
}
if err := e.encodeOidLookup(hashes); err != nil {
return err
}
extraEdges, generationV2Data, err := e.encodeCommitData(hashes, hashToIndex, idx)
if err != nil {
return err
}
if err = e.encodeExtraEdges(extraEdges); err != nil {
return err
}
if idx.HasGenerationV2() {
overflows, err := e.encodeGenerationV2Data(generationV2Data)
if err != nil {
return err
}
if err = e.encodeGenerationV2Overflow(overflows); err != nil {
return err
}
}
return e.encodeChecksum()
}
func (e *Encoder) prepare(idx Index, hashes []plumbing.Hash) (hashToIndex map[plumbing.Hash]uint32, fanout []uint32, extraEdgesCount uint32, generationV2OverflowCount uint32) {
// Sort the hashes and build our index
plumbing.HashesSort(hashes)
hashToIndex = make(map[plumbing.Hash]uint32)
fanout = make([]uint32, lenFanout)
for i, hash := range hashes {
hashToIndex[hash] = uint32(i)
fanout[hash[0]]++
}
// Convert the fanout to cumulative values
for i := 1; i < lenFanout; i++ {
fanout[i] += fanout[i-1]
}
hasGenerationV2 := idx.HasGenerationV2()
// Find out if we will need extra edge table
for i := 0; i < len(hashes); i++ {
v, _ := idx.GetCommitDataByIndex(uint32(i))
if len(v.ParentHashes) > 2 {
extraEdgesCount += uint32(len(v.ParentHashes) - 1)
}
if hasGenerationV2 && v.GenerationV2Data() > math.MaxUint32 {
generationV2OverflowCount++
}
}
return
}
func (e *Encoder) encodeFileHeader(chunkCount int) (err error) {
if _, err = e.Write(commitFileSignature); err == nil {
version := byte(1)
if hash.CryptoType == crypto.SHA256 {
version = byte(2)
}
_, err = e.Write([]byte{1, version, byte(chunkCount), 0})
}
return
}
func (e *Encoder) encodeChunkHeaders(chunkSignatures [][]byte, chunkSizes []uint64) (err error) {
// 8 bytes of file header, 12 bytes for each chunk header and 12 byte for terminator
offset := uint64(szSignature + szHeader + (len(chunkSignatures)+1)*(szChunkSig+szUint64))
for i, signature := range chunkSignatures {
if _, err = e.Write(signature); err == nil {
err = binary.WriteUint64(e, offset)
}
if err != nil {
return
}
offset += chunkSizes[i]
}
if _, err = e.Write(ZeroChunk.Signature()); err == nil {
err = binary.WriteUint64(e, offset)
}
return
}
func (e *Encoder) encodeFanout(fanout []uint32) (err error) {
for i := 0; i <= 0xff; i++ {
if err = binary.WriteUint32(e, fanout[i]); err != nil {
return
}
}
return
}
func (e *Encoder) encodeOidLookup(hashes []plumbing.Hash) (err error) {
for _, hash := range hashes {
if _, err = e.Write(hash[:]); err != nil {
return err
}
}
return
}
func (e *Encoder) encodeCommitData(hashes []plumbing.Hash, hashToIndex map[plumbing.Hash]uint32, idx Index) (extraEdges []uint32, generationV2Data []uint64, err error) {
if idx.HasGenerationV2() {
generationV2Data = make([]uint64, 0, len(hashes))
}
for _, hash := range hashes {
origIndex, _ := idx.GetIndexByHash(hash)
commitData, _ := idx.GetCommitDataByIndex(origIndex)
if _, err = e.Write(commitData.TreeHash[:]); err != nil {
return
}
var parent1, parent2 uint32
if len(commitData.ParentHashes) == 0 {
parent1 = parentNone
parent2 = parentNone
} else if len(commitData.ParentHashes) == 1 {
parent1 = hashToIndex[commitData.ParentHashes[0]]
parent2 = parentNone
} else if len(commitData.ParentHashes) == 2 {
parent1 = hashToIndex[commitData.ParentHashes[0]]
parent2 = hashToIndex[commitData.ParentHashes[1]]
} else if len(commitData.ParentHashes) > 2 {
parent1 = hashToIndex[commitData.ParentHashes[0]]
parent2 = uint32(len(extraEdges)) | parentOctopusUsed
for _, parentHash := range commitData.ParentHashes[1:] {
extraEdges = append(extraEdges, hashToIndex[parentHash])
}
extraEdges[len(extraEdges)-1] |= parentLast
}
if err = binary.WriteUint32(e, parent1); err == nil {
err = binary.WriteUint32(e, parent2)
}
if err != nil {
return
}
unixTime := uint64(commitData.When.Unix())
unixTime |= uint64(commitData.Generation) << 34
if err = binary.WriteUint64(e, unixTime); err != nil {
return
}
if generationV2Data != nil {
generationV2Data = append(generationV2Data, commitData.GenerationV2Data())
}
}
return
}
func (e *Encoder) encodeExtraEdges(extraEdges []uint32) (err error) {
for _, parent := range extraEdges {
if err = binary.WriteUint32(e, parent); err != nil {
return
}
}
return
}
func (e *Encoder) encodeGenerationV2Data(generationV2Data []uint64) (overflows []uint64, err error) {
head := 0
for _, data := range generationV2Data {
if data >= 0x80000000 {
// overflow
if err = binary.WriteUint32(e, uint32(head)|0x80000000); err != nil {
return nil, err
}
generationV2Data[head] = data
head++
continue
}
if err = binary.WriteUint32(e, uint32(data)); err != nil {
return nil, err
}
}
return generationV2Data[:head], nil
}
func (e *Encoder) encodeGenerationV2Overflow(overflows []uint64) (err error) {
for _, overflow := range overflows {
if err = binary.WriteUint64(e, overflow); err != nil {
return
}
}
return
}
func (e *Encoder) encodeChecksum() error {
_, err := e.Write(e.hash.Sum(nil)[:hash.Size])
return err
}
|