1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
// Package influx provides an InfluxDB implementation for metrics. The model is
// similar to other push-based instrumentation systems. Observations are
// aggregated locally and emitted to the Influx server on regular intervals.
package influx
import (
"context"
"time"
influxdb "github.com/influxdata/influxdb1-client/v2"
"github.com/go-kit/kit/metrics"
"github.com/go-kit/kit/metrics/generic"
"github.com/go-kit/kit/metrics/internal/lv"
"github.com/go-kit/log"
)
// Influx is a store for metrics that will be emitted to an Influx database.
//
// Influx is a general purpose time-series database, and has no native concepts
// of counters, gauges, or histograms. Counters are modeled as a timeseries with
// one data point per flush, with a "count" field that reflects all adds since
// the last flush. Gauges are modeled as a timeseries with one data point per
// flush, with a "value" field that reflects the current state of the gauge.
// Histograms are modeled as a timeseries with one data point per combination of tags,
// with a set of quantile fields that reflects the p50, p90, p95 & p99.
//
// Influx tags are attached to the Influx object, can be given to each
// metric at construction and can be updated anytime via With function. Influx fields
// are mapped to Go kit label values directly by this collector. Actual metric
// values are provided as fields with specific names depending on the metric.
//
// All observations are collected in memory locally, and flushed on demand.
type Influx struct {
counters *lv.Space
gauges *lv.Space
histograms *lv.Space
tags map[string]string
conf influxdb.BatchPointsConfig
logger log.Logger
}
// New returns an Influx, ready to create metrics and collect observations. Tags
// are applied to all metrics created from this object. The BatchPointsConfig is
// used during flushing.
func New(tags map[string]string, conf influxdb.BatchPointsConfig, logger log.Logger) *Influx {
return &Influx{
counters: lv.NewSpace(),
gauges: lv.NewSpace(),
histograms: lv.NewSpace(),
tags: tags,
conf: conf,
logger: logger,
}
}
// NewCounter returns an Influx counter.
func (in *Influx) NewCounter(name string) *Counter {
return &Counter{
name: name,
obs: in.counters.Observe,
}
}
// NewGauge returns an Influx gauge.
func (in *Influx) NewGauge(name string) *Gauge {
return &Gauge{
name: name,
obs: in.gauges.Observe,
add: in.gauges.Add,
}
}
// NewHistogram returns an Influx histogram.
func (in *Influx) NewHistogram(name string) *Histogram {
return &Histogram{
name: name,
obs: in.histograms.Observe,
}
}
// BatchPointsWriter captures a subset of the influxdb.Client methods necessary
// for emitting metrics observations.
type BatchPointsWriter interface {
Write(influxdb.BatchPoints) error
}
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
// time the passed channel fires. This method blocks until the channel is
// closed, so clients probably want to run it in its own goroutine. For typical
// usage, create a time.Ticker and pass its C channel to this method.
func (in *Influx) WriteLoop(ctx context.Context, c <-chan time.Time, w BatchPointsWriter) {
for {
select {
case <-c:
if err := in.WriteTo(w); err != nil {
in.logger.Log("during", "WriteTo", "err", err)
}
case <-ctx.Done():
return
}
}
}
// WriteTo flushes the buffered content of the metrics to the writer, in an
// Influx BatchPoints format. WriteTo abides best-effort semantics, so
// observations are lost if there is a problem with the write. Clients should be
// sure to call WriteTo regularly, ideally through the WriteLoop helper method.
func (in *Influx) WriteTo(w BatchPointsWriter) (err error) {
bp, err := influxdb.NewBatchPoints(in.conf)
if err != nil {
return err
}
now := time.Now()
in.counters.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
fields := map[string]interface{}{"count": sum(values)}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
in.gauges.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
fields := map[string]interface{}{"value": last(values)}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
in.histograms.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
histogram := generic.NewHistogram(name, 50)
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
for _, v := range values {
histogram.Observe(v)
}
fields := map[string]interface{}{
"p50": histogram.Quantile(0.50),
"p90": histogram.Quantile(0.90),
"p95": histogram.Quantile(0.95),
"p99": histogram.Quantile(0.99),
}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
return w.Write(bp)
}
func mergeTags(tags map[string]string, labelValues []string) map[string]string {
if len(labelValues)%2 != 0 {
panic("mergeTags received a labelValues with an odd number of strings")
}
ret := make(map[string]string, len(tags)+len(labelValues)/2)
for k, v := range tags {
ret[k] = v
}
for i := 0; i < len(labelValues); i += 2 {
ret[labelValues[i]] = labelValues[i+1]
}
return ret
}
func sum(a []float64) float64 {
var v float64
for _, f := range a {
v += f
}
return v
}
func last(a []float64) float64 {
return a[len(a)-1]
}
type observeFunc func(name string, lvs lv.LabelValues, value float64)
// Counter is an Influx counter. Observations are forwarded to an Influx
// object, and aggregated (summed) per timeseries.
type Counter struct {
name string
lvs lv.LabelValues
obs observeFunc
}
// With implements metrics.Counter.
func (c *Counter) With(labelValues ...string) metrics.Counter {
return &Counter{
name: c.name,
lvs: c.lvs.With(labelValues...),
obs: c.obs,
}
}
// Add implements metrics.Counter.
func (c *Counter) Add(delta float64) {
c.obs(c.name, c.lvs, delta)
}
// Gauge is an Influx gauge. Observations are forwarded to a Dogstatsd
// object, and aggregated (the last observation selected) per timeseries.
type Gauge struct {
name string
lvs lv.LabelValues
obs observeFunc
add observeFunc
}
// With implements metrics.Gauge.
func (g *Gauge) With(labelValues ...string) metrics.Gauge {
return &Gauge{
name: g.name,
lvs: g.lvs.With(labelValues...),
obs: g.obs,
add: g.add,
}
}
// Set implements metrics.Gauge.
func (g *Gauge) Set(value float64) {
g.obs(g.name, g.lvs, value)
}
// Add implements metrics.Gauge.
func (g *Gauge) Add(delta float64) {
g.add(g.name, g.lvs, delta)
}
// Histogram is an Influx histrogram. Observations are aggregated into a
// generic.Histogram and emitted as per-quantile gauges to the Influx server.
type Histogram struct {
name string
lvs lv.LabelValues
obs observeFunc
}
// With implements metrics.Histogram.
func (h *Histogram) With(labelValues ...string) metrics.Histogram {
return &Histogram{
name: h.name,
lvs: h.lvs.With(labelValues...),
obs: h.obs,
}
}
// Observe implements metrics.Histogram.
func (h *Histogram) Observe(value float64) {
h.obs(h.name, h.lvs, value)
}
|