1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
// Package statsd provides a StatsD backend for package metrics. StatsD has no
// concept of arbitrary key-value tagging, so label values are not supported,
// and With is a no-op on all metrics.
//
// This package batches observations and emits them on some schedule to the
// remote server. This is useful even if you connect to your StatsD server over
// UDP. Emitting one network packet per observation can quickly overwhelm even
// the fastest internal network.
package statsd
import (
"context"
"fmt"
"io"
"time"
"github.com/go-kit/kit/metrics"
"github.com/go-kit/kit/metrics/internal/lv"
"github.com/go-kit/kit/metrics/internal/ratemap"
"github.com/go-kit/kit/util/conn"
"github.com/go-kit/log"
)
// Statsd receives metrics observations and forwards them to a StatsD server.
// Create a Statsd object, use it to create metrics, and pass those metrics as
// dependencies to the components that will use them.
//
// All metrics are buffered until WriteTo is called. Counters and gauges are
// aggregated into a single observation per timeseries per write. Timings are
// buffered but not aggregated.
//
// To regularly report metrics to an io.Writer, use the WriteLoop helper method.
// To send to a StatsD server, use the SendLoop helper method.
type Statsd struct {
prefix string
rates *ratemap.RateMap
// The observations are collected in an N-dimensional vector space, even
// though they only take advantage of a single dimension (name). This is an
// implementation detail born purely from convenience. It would be more
// accurate to collect them in a map[string][]float64, but we already have
// this nice data structure and helper methods.
counters *lv.Space
gauges *lv.Space
timings *lv.Space
logger log.Logger
}
// New returns a Statsd object that may be used to create metrics. Prefix is
// applied to all created metrics. Callers must ensure that regular calls to
// WriteTo are performed, either manually or with one of the helper methods.
func New(prefix string, logger log.Logger) *Statsd {
return &Statsd{
prefix: prefix,
rates: ratemap.New(),
counters: lv.NewSpace(),
gauges: lv.NewSpace(),
timings: lv.NewSpace(),
logger: logger,
}
}
// NewCounter returns a counter, sending observations to this Statsd object.
func (s *Statsd) NewCounter(name string, sampleRate float64) *Counter {
s.rates.Set(s.prefix+name, sampleRate)
return &Counter{
name: s.prefix + name,
obs: s.counters.Observe,
}
}
// NewGauge returns a gauge, sending observations to this Statsd object.
func (s *Statsd) NewGauge(name string) *Gauge {
return &Gauge{
name: s.prefix + name,
obs: s.gauges.Observe,
add: s.gauges.Add,
}
}
// NewTiming returns a histogram whose observations are interpreted as
// millisecond durations, and are forwarded to this Statsd object.
func (s *Statsd) NewTiming(name string, sampleRate float64) *Timing {
s.rates.Set(s.prefix+name, sampleRate)
return &Timing{
name: s.prefix + name,
obs: s.timings.Observe,
}
}
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
// time the passed channel fires. This method blocks until ctx is canceled,
// so clients probably want to run it in its own goroutine. For typical
// usage, create a time.Ticker and pass its C channel to this method.
func (s *Statsd) WriteLoop(ctx context.Context, c <-chan time.Time, w io.Writer) {
for {
select {
case <-c:
if _, err := s.WriteTo(w); err != nil {
s.logger.Log("during", "WriteTo", "err", err)
}
case <-ctx.Done():
return
}
}
}
// SendLoop is a helper method that wraps WriteLoop, passing a managed
// connection to the network and address. Like WriteLoop, this method blocks
// until ctx is canceled, so clients probably want to start it in its own
// goroutine. For typical usage, create a time.Ticker and pass its C channel to
// this method.
func (s *Statsd) SendLoop(ctx context.Context, c <-chan time.Time, network, address string) {
s.WriteLoop(ctx, c, conn.NewDefaultManager(network, address, s.logger))
}
// WriteTo flushes the buffered content of the metrics to the writer, in
// StatsD format. WriteTo abides best-effort semantics, so observations are
// lost if there is a problem with the write. Clients should be sure to call
// WriteTo regularly, ideally through the WriteLoop or SendLoop helper methods.
func (s *Statsd) WriteTo(w io.Writer) (count int64, err error) {
var n int
s.counters.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
n, err = fmt.Fprintf(w, "%s:%f|c%s\n", name, sum(values), sampling(s.rates.Get(name)))
if err != nil {
return false
}
count += int64(n)
return true
})
if err != nil {
return count, err
}
s.gauges.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
n, err = fmt.Fprintf(w, "%s:%f|g\n", name, last(values))
if err != nil {
return false
}
count += int64(n)
return true
})
if err != nil {
return count, err
}
s.timings.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
sampleRate := s.rates.Get(name)
for _, value := range values {
n, err = fmt.Fprintf(w, "%s:%f|ms%s\n", name, value, sampling(sampleRate))
if err != nil {
return false
}
count += int64(n)
}
return true
})
if err != nil {
return count, err
}
return count, err
}
func sum(a []float64) float64 {
var v float64
for _, f := range a {
v += f
}
return v
}
func last(a []float64) float64 {
return a[len(a)-1]
}
func sampling(r float64) string {
var sv string
if r < 1.0 {
sv = fmt.Sprintf("|@%f", r)
}
return sv
}
type observeFunc func(name string, lvs lv.LabelValues, value float64)
// Counter is a StatsD counter. Observations are forwarded to a Statsd object,
// and aggregated (summed) per timeseries.
type Counter struct {
name string
obs observeFunc
}
// With is a no-op.
func (c *Counter) With(...string) metrics.Counter {
return c
}
// Add implements metrics.Counter.
func (c *Counter) Add(delta float64) {
c.obs(c.name, lv.LabelValues{}, delta)
}
// Gauge is a StatsD gauge. Observations are forwarded to a Statsd object, and
// aggregated (the last observation selected) per timeseries.
type Gauge struct {
name string
obs observeFunc
add observeFunc
}
// With is a no-op.
func (g *Gauge) With(...string) metrics.Gauge {
return g
}
// Set implements metrics.Gauge.
func (g *Gauge) Set(value float64) {
g.obs(g.name, lv.LabelValues{}, value)
}
// Add implements metrics.Gauge.
func (g *Gauge) Add(delta float64) {
g.add(g.name, lv.LabelValues{}, delta)
}
// Timing is a StatsD timing, or metrics.Histogram. Observations are
// forwarded to a Statsd object, and collected (but not aggregated) per
// timeseries.
type Timing struct {
name string
obs observeFunc
}
// With is a no-op.
func (t *Timing) With(...string) metrics.Histogram {
return t
}
// Observe implements metrics.Histogram. Value is interpreted as milliseconds.
func (t *Timing) Observe(value float64) {
t.obs(t.name, lv.LabelValues{}, value)
}
|