1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
// Copyright (c) 2012 The gocql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//This file will be the future home for more policies
package gocql
import (
"context"
crand "crypto/rand"
"encoding/binary"
"errors"
"fmt"
"math"
"math/rand"
"net"
"sync"
"sync/atomic"
"time"
"github.com/hailocab/go-hostpool"
)
// cowHostList implements a copy on write host list, its equivalent type is []*HostInfo
type cowHostList struct {
list atomic.Value
mu sync.Mutex
}
func (c *cowHostList) String() string {
return fmt.Sprintf("%+v", c.get())
}
func (c *cowHostList) get() []*HostInfo {
// TODO(zariel): should we replace this with []*HostInfo?
l, ok := c.list.Load().(*[]*HostInfo)
if !ok {
return nil
}
return *l
}
func (c *cowHostList) set(list []*HostInfo) {
c.mu.Lock()
c.list.Store(&list)
c.mu.Unlock()
}
// add will add a host if it not already in the list
func (c *cowHostList) add(host *HostInfo) bool {
c.mu.Lock()
l := c.get()
if n := len(l); n == 0 {
l = []*HostInfo{host}
} else {
newL := make([]*HostInfo, n+1)
for i := 0; i < n; i++ {
if host.Equal(l[i]) {
c.mu.Unlock()
return false
}
newL[i] = l[i]
}
newL[n] = host
l = newL
}
c.list.Store(&l)
c.mu.Unlock()
return true
}
func (c *cowHostList) update(host *HostInfo) {
c.mu.Lock()
l := c.get()
if len(l) == 0 {
c.mu.Unlock()
return
}
found := false
newL := make([]*HostInfo, len(l))
for i := range l {
if host.Equal(l[i]) {
newL[i] = host
found = true
} else {
newL[i] = l[i]
}
}
if found {
c.list.Store(&newL)
}
c.mu.Unlock()
}
func (c *cowHostList) remove(ip net.IP) bool {
c.mu.Lock()
l := c.get()
size := len(l)
if size == 0 {
c.mu.Unlock()
return false
}
found := false
newL := make([]*HostInfo, 0, size)
for i := 0; i < len(l); i++ {
if !l[i].ConnectAddress().Equal(ip) {
newL = append(newL, l[i])
} else {
found = true
}
}
if !found {
c.mu.Unlock()
return false
}
newL = newL[: size-1 : size-1]
c.list.Store(&newL)
c.mu.Unlock()
return true
}
// RetryableQuery is an interface that represents a query or batch statement that
// exposes the correct functions for the retry policy logic to evaluate correctly.
type RetryableQuery interface {
Attempts() int
SetConsistency(c Consistency)
GetConsistency() Consistency
Context() context.Context
}
type RetryType uint16
const (
Retry RetryType = 0x00 // retry on same connection
RetryNextHost RetryType = 0x01 // retry on another connection
Ignore RetryType = 0x02 // ignore error and return result
Rethrow RetryType = 0x03 // raise error and stop retrying
)
// ErrUnknownRetryType is returned if the retry policy returns a retry type
// unknown to the query executor.
var ErrUnknownRetryType = errors.New("unknown retry type returned by retry policy")
// RetryPolicy interface is used by gocql to determine if a query can be attempted
// again after a retryable error has been received. The interface allows gocql
// users to implement their own logic to determine if a query can be attempted
// again.
//
// See SimpleRetryPolicy as an example of implementing and using a RetryPolicy
// interface.
type RetryPolicy interface {
Attempt(RetryableQuery) bool
GetRetryType(error) RetryType
}
// SimpleRetryPolicy has simple logic for attempting a query a fixed number of times.
//
// See below for examples of usage:
//
// //Assign to the cluster
// cluster.RetryPolicy = &gocql.SimpleRetryPolicy{NumRetries: 3}
//
// //Assign to a query
// query.RetryPolicy(&gocql.SimpleRetryPolicy{NumRetries: 1})
//
type SimpleRetryPolicy struct {
NumRetries int //Number of times to retry a query
}
// Attempt tells gocql to attempt the query again based on query.Attempts being less
// than the NumRetries defined in the policy.
func (s *SimpleRetryPolicy) Attempt(q RetryableQuery) bool {
return q.Attempts() <= s.NumRetries
}
func (s *SimpleRetryPolicy) GetRetryType(err error) RetryType {
return RetryNextHost
}
// ExponentialBackoffRetryPolicy sleeps between attempts
type ExponentialBackoffRetryPolicy struct {
NumRetries int
Min, Max time.Duration
}
func (e *ExponentialBackoffRetryPolicy) Attempt(q RetryableQuery) bool {
if q.Attempts() > e.NumRetries {
return false
}
time.Sleep(e.napTime(q.Attempts()))
return true
}
// used to calculate exponentially growing time
func getExponentialTime(min time.Duration, max time.Duration, attempts int) time.Duration {
if min <= 0 {
min = 100 * time.Millisecond
}
if max <= 0 {
max = 10 * time.Second
}
minFloat := float64(min)
napDuration := minFloat * math.Pow(2, float64(attempts-1))
// add some jitter
napDuration += rand.Float64()*minFloat - (minFloat / 2)
if napDuration > float64(max) {
return time.Duration(max)
}
return time.Duration(napDuration)
}
func (e *ExponentialBackoffRetryPolicy) GetRetryType(err error) RetryType {
return RetryNextHost
}
// DowngradingConsistencyRetryPolicy: Next retry will be with the next consistency level
// provided in the slice
//
// On a read timeout: the operation is retried with the next provided consistency
// level.
//
// On a write timeout: if the operation is an :attr:`~.UNLOGGED_BATCH`
// and at least one replica acknowledged the write, the operation is
// retried with the next consistency level. Furthermore, for other
// write types, if at least one replica acknowledged the write, the
// timeout is ignored.
//
// On an unavailable exception: if at least one replica is alive, the
// operation is retried with the next provided consistency level.
type DowngradingConsistencyRetryPolicy struct {
ConsistencyLevelsToTry []Consistency
}
func (d *DowngradingConsistencyRetryPolicy) Attempt(q RetryableQuery) bool {
currentAttempt := q.Attempts()
if currentAttempt > len(d.ConsistencyLevelsToTry) {
return false
} else if currentAttempt > 0 {
q.SetConsistency(d.ConsistencyLevelsToTry[currentAttempt-1])
if gocqlDebug {
Logger.Printf("%T: set consistency to %q\n",
d,
d.ConsistencyLevelsToTry[currentAttempt-1])
}
}
return true
}
func (d *DowngradingConsistencyRetryPolicy) GetRetryType(err error) RetryType {
switch t := err.(type) {
case *RequestErrUnavailable:
if t.Alive > 0 {
return Retry
}
return Rethrow
case *RequestErrWriteTimeout:
if t.WriteType == "SIMPLE" || t.WriteType == "BATCH" || t.WriteType == "COUNTER" {
if t.Received > 0 {
return Ignore
}
return Rethrow
}
if t.WriteType == "UNLOGGED_BATCH" {
return Retry
}
return Rethrow
case *RequestErrReadTimeout:
return Retry
default:
return RetryNextHost
}
}
func (e *ExponentialBackoffRetryPolicy) napTime(attempts int) time.Duration {
return getExponentialTime(e.Min, e.Max, attempts)
}
type HostStateNotifier interface {
AddHost(host *HostInfo)
RemoveHost(host *HostInfo)
HostUp(host *HostInfo)
HostDown(host *HostInfo)
}
type KeyspaceUpdateEvent struct {
Keyspace string
Change string
}
// HostSelectionPolicy is an interface for selecting
// the most appropriate host to execute a given query.
type HostSelectionPolicy interface {
HostStateNotifier
SetPartitioner
KeyspaceChanged(KeyspaceUpdateEvent)
Init(*Session)
IsLocal(host *HostInfo) bool
//Pick returns an iteration function over selected hosts
Pick(ExecutableQuery) NextHost
}
// SelectedHost is an interface returned when picking a host from a host
// selection policy.
type SelectedHost interface {
Info() *HostInfo
Mark(error)
}
type selectedHost HostInfo
func (host *selectedHost) Info() *HostInfo {
return (*HostInfo)(host)
}
func (host *selectedHost) Mark(err error) {}
// NextHost is an iteration function over picked hosts
type NextHost func() SelectedHost
// RoundRobinHostPolicy is a round-robin load balancing policy, where each host
// is tried sequentially for each query.
func RoundRobinHostPolicy() HostSelectionPolicy {
return &roundRobinHostPolicy{}
}
type roundRobinHostPolicy struct {
hosts cowHostList
}
func (r *roundRobinHostPolicy) IsLocal(*HostInfo) bool { return true }
func (r *roundRobinHostPolicy) KeyspaceChanged(KeyspaceUpdateEvent) {}
func (r *roundRobinHostPolicy) SetPartitioner(partitioner string) {}
func (r *roundRobinHostPolicy) Init(*Session) {}
func (r *roundRobinHostPolicy) Pick(qry ExecutableQuery) NextHost {
src := r.hosts.get()
hosts := make([]*HostInfo, len(src))
copy(hosts, src)
rand := rand.New(randSource())
rand.Shuffle(len(hosts), func(i, j int) {
hosts[i], hosts[j] = hosts[j], hosts[i]
})
return roundRobbin(hosts)
}
func (r *roundRobinHostPolicy) AddHost(host *HostInfo) {
r.hosts.add(host)
}
func (r *roundRobinHostPolicy) RemoveHost(host *HostInfo) {
r.hosts.remove(host.ConnectAddress())
}
func (r *roundRobinHostPolicy) HostUp(host *HostInfo) {
r.AddHost(host)
}
func (r *roundRobinHostPolicy) HostDown(host *HostInfo) {
r.RemoveHost(host)
}
func ShuffleReplicas() func(*tokenAwareHostPolicy) {
return func(t *tokenAwareHostPolicy) {
t.shuffleReplicas = true
}
}
// NonLocalReplicasFallback enables fallback to replicas that are not considered local.
//
// TokenAwareHostPolicy used with DCAwareHostPolicy fallback first selects replicas by partition key in local DC, then
// falls back to other nodes in the local DC. Enabling NonLocalReplicasFallback causes TokenAwareHostPolicy
// to first select replicas by partition key in local DC, then replicas by partition key in remote DCs and fall back
// to other nodes in local DC.
func NonLocalReplicasFallback() func(policy *tokenAwareHostPolicy) {
return func(t *tokenAwareHostPolicy) {
t.nonLocalReplicasFallback = true
}
}
// TokenAwareHostPolicy is a token aware host selection policy, where hosts are
// selected based on the partition key, so queries are sent to the host which
// owns the partition. Fallback is used when routing information is not available.
func TokenAwareHostPolicy(fallback HostSelectionPolicy, opts ...func(*tokenAwareHostPolicy)) HostSelectionPolicy {
p := &tokenAwareHostPolicy{fallback: fallback}
for _, opt := range opts {
opt(p)
}
return p
}
// clusterMeta holds metadata about cluster topology.
// It is used inside atomic.Value and shallow copies are used when replacing it,
// so fields should not be modified in-place. Instead, to modify a field a copy of the field should be made
// and the pointer in clusterMeta updated to point to the new value.
type clusterMeta struct {
// replicas is map[keyspace]map[token]hosts
replicas map[string]tokenRingReplicas
tokenRing *tokenRing
}
type tokenAwareHostPolicy struct {
fallback HostSelectionPolicy
getKeyspaceMetadata func(keyspace string) (*KeyspaceMetadata, error)
getKeyspaceName func() string
shuffleReplicas bool
nonLocalReplicasFallback bool
// mu protects writes to hosts, partitioner, metadata.
// reads can be unlocked as long as they are not used for updating state later.
mu sync.Mutex
hosts cowHostList
partitioner string
metadata atomic.Value // *clusterMeta
}
func (t *tokenAwareHostPolicy) Init(s *Session) {
t.getKeyspaceMetadata = s.KeyspaceMetadata
t.getKeyspaceName = func() string { return s.cfg.Keyspace }
}
func (t *tokenAwareHostPolicy) IsLocal(host *HostInfo) bool {
return t.fallback.IsLocal(host)
}
func (t *tokenAwareHostPolicy) KeyspaceChanged(update KeyspaceUpdateEvent) {
t.mu.Lock()
defer t.mu.Unlock()
meta := t.getMetadataForUpdate()
t.updateReplicas(meta, update.Keyspace)
t.metadata.Store(meta)
}
// updateReplicas updates replicas in clusterMeta.
// It must be called with t.mu mutex locked.
// meta must not be nil and it's replicas field will be updated.
func (t *tokenAwareHostPolicy) updateReplicas(meta *clusterMeta, keyspace string) {
newReplicas := make(map[string]tokenRingReplicas, len(meta.replicas))
ks, err := t.getKeyspaceMetadata(keyspace)
if err == nil {
strat := getStrategy(ks)
if strat != nil {
if meta != nil && meta.tokenRing != nil {
newReplicas[keyspace] = strat.replicaMap(meta.tokenRing)
}
}
}
for ks, replicas := range meta.replicas {
if ks != keyspace {
newReplicas[ks] = replicas
}
}
meta.replicas = newReplicas
}
func (t *tokenAwareHostPolicy) SetPartitioner(partitioner string) {
t.mu.Lock()
defer t.mu.Unlock()
if t.partitioner != partitioner {
t.fallback.SetPartitioner(partitioner)
t.partitioner = partitioner
meta := t.getMetadataForUpdate()
meta.resetTokenRing(t.partitioner, t.hosts.get())
t.updateReplicas(meta, t.getKeyspaceName())
t.metadata.Store(meta)
}
}
func (t *tokenAwareHostPolicy) AddHost(host *HostInfo) {
t.mu.Lock()
if t.hosts.add(host) {
meta := t.getMetadataForUpdate()
meta.resetTokenRing(t.partitioner, t.hosts.get())
t.updateReplicas(meta, t.getKeyspaceName())
t.metadata.Store(meta)
}
t.mu.Unlock()
t.fallback.AddHost(host)
}
func (t *tokenAwareHostPolicy) AddHosts(hosts []*HostInfo) {
t.mu.Lock()
for _, host := range hosts {
t.hosts.add(host)
}
meta := t.getMetadataForUpdate()
meta.resetTokenRing(t.partitioner, t.hosts.get())
t.updateReplicas(meta, t.getKeyspaceName())
t.metadata.Store(meta)
t.mu.Unlock()
for _, host := range hosts {
t.fallback.AddHost(host)
}
}
func (t *tokenAwareHostPolicy) RemoveHost(host *HostInfo) {
t.mu.Lock()
if t.hosts.remove(host.ConnectAddress()) {
meta := t.getMetadataForUpdate()
meta.resetTokenRing(t.partitioner, t.hosts.get())
t.updateReplicas(meta, t.getKeyspaceName())
t.metadata.Store(meta)
}
t.mu.Unlock()
t.fallback.RemoveHost(host)
}
func (t *tokenAwareHostPolicy) HostUp(host *HostInfo) {
t.fallback.HostUp(host)
}
func (t *tokenAwareHostPolicy) HostDown(host *HostInfo) {
t.fallback.HostDown(host)
}
// getMetadataReadOnly returns current cluster metadata.
// Metadata uses copy on write, so the returned value should be only used for reading.
// To obtain a copy that could be updated, use getMetadataForUpdate instead.
func (t *tokenAwareHostPolicy) getMetadataReadOnly() *clusterMeta {
meta, _ := t.metadata.Load().(*clusterMeta)
return meta
}
// getMetadataForUpdate returns clusterMeta suitable for updating.
// It is a SHALLOW copy of current metadata in case it was already set or new empty clusterMeta otherwise.
// This function should be called with t.mu mutex locked and the mutex should not be released before
// storing the new metadata.
func (t *tokenAwareHostPolicy) getMetadataForUpdate() *clusterMeta {
metaReadOnly := t.getMetadataReadOnly()
meta := new(clusterMeta)
if metaReadOnly != nil {
*meta = *metaReadOnly
}
return meta
}
// resetTokenRing creates a new tokenRing.
// It must be called with t.mu locked.
func (m *clusterMeta) resetTokenRing(partitioner string, hosts []*HostInfo) {
if partitioner == "" {
// partitioner not yet set
return
}
// create a new token ring
tokenRing, err := newTokenRing(partitioner, hosts)
if err != nil {
Logger.Printf("Unable to update the token ring due to error: %s", err)
return
}
// replace the token ring
m.tokenRing = tokenRing
}
func (t *tokenAwareHostPolicy) Pick(qry ExecutableQuery) NextHost {
if qry == nil {
return t.fallback.Pick(qry)
}
routingKey, err := qry.GetRoutingKey()
if err != nil {
return t.fallback.Pick(qry)
} else if routingKey == nil {
return t.fallback.Pick(qry)
}
meta := t.getMetadataReadOnly()
if meta == nil || meta.tokenRing == nil {
return t.fallback.Pick(qry)
}
token := meta.tokenRing.partitioner.Hash(routingKey)
ht := meta.replicas[qry.Keyspace()].replicasFor(token)
var replicas []*HostInfo
if ht == nil {
host, _ := meta.tokenRing.GetHostForToken(token)
replicas = []*HostInfo{host}
} else if t.shuffleReplicas {
replicas = shuffleHosts(replicas)
} else {
replicas = ht.hosts
}
var (
fallbackIter NextHost
i, j int
remote []*HostInfo
)
used := make(map[*HostInfo]bool, len(replicas))
return func() SelectedHost {
for i < len(replicas) {
h := replicas[i]
i++
if !t.fallback.IsLocal(h) {
remote = append(remote, h)
continue
}
if h.IsUp() {
used[h] = true
return (*selectedHost)(h)
}
}
if t.nonLocalReplicasFallback {
for j < len(remote) {
h := remote[j]
j++
if h.IsUp() {
used[h] = true
return (*selectedHost)(h)
}
}
}
if fallbackIter == nil {
// fallback
fallbackIter = t.fallback.Pick(qry)
}
// filter the token aware selected hosts from the fallback hosts
for fallbackHost := fallbackIter(); fallbackHost != nil; fallbackHost = fallbackIter() {
if !used[fallbackHost.Info()] {
used[fallbackHost.Info()] = true
return fallbackHost
}
}
return nil
}
}
// HostPoolHostPolicy is a host policy which uses the bitly/go-hostpool library
// to distribute queries between hosts and prevent sending queries to
// unresponsive hosts. When creating the host pool that is passed to the policy
// use an empty slice of hosts as the hostpool will be populated later by gocql.
// See below for examples of usage:
//
// // Create host selection policy using a simple host pool
// cluster.PoolConfig.HostSelectionPolicy = HostPoolHostPolicy(hostpool.New(nil))
//
// // Create host selection policy using an epsilon greedy pool
// cluster.PoolConfig.HostSelectionPolicy = HostPoolHostPolicy(
// hostpool.NewEpsilonGreedy(nil, 0, &hostpool.LinearEpsilonValueCalculator{}),
// )
//
func HostPoolHostPolicy(hp hostpool.HostPool) HostSelectionPolicy {
return &hostPoolHostPolicy{hostMap: map[string]*HostInfo{}, hp: hp}
}
type hostPoolHostPolicy struct {
hp hostpool.HostPool
mu sync.RWMutex
hostMap map[string]*HostInfo
}
func (r *hostPoolHostPolicy) Init(*Session) {}
func (r *hostPoolHostPolicy) KeyspaceChanged(KeyspaceUpdateEvent) {}
func (r *hostPoolHostPolicy) SetPartitioner(string) {}
func (r *hostPoolHostPolicy) IsLocal(*HostInfo) bool { return true }
func (r *hostPoolHostPolicy) SetHosts(hosts []*HostInfo) {
peers := make([]string, len(hosts))
hostMap := make(map[string]*HostInfo, len(hosts))
for i, host := range hosts {
ip := host.ConnectAddress().String()
peers[i] = ip
hostMap[ip] = host
}
r.mu.Lock()
r.hp.SetHosts(peers)
r.hostMap = hostMap
r.mu.Unlock()
}
func (r *hostPoolHostPolicy) AddHost(host *HostInfo) {
ip := host.ConnectAddress().String()
r.mu.Lock()
defer r.mu.Unlock()
// If the host addr is present and isn't nil return
if h, ok := r.hostMap[ip]; ok && h != nil {
return
}
// otherwise, add the host to the map
r.hostMap[ip] = host
// and construct a new peer list to give to the HostPool
hosts := make([]string, 0, len(r.hostMap))
for addr := range r.hostMap {
hosts = append(hosts, addr)
}
r.hp.SetHosts(hosts)
}
func (r *hostPoolHostPolicy) RemoveHost(host *HostInfo) {
ip := host.ConnectAddress().String()
r.mu.Lock()
defer r.mu.Unlock()
if _, ok := r.hostMap[ip]; !ok {
return
}
delete(r.hostMap, ip)
hosts := make([]string, 0, len(r.hostMap))
for _, host := range r.hostMap {
hosts = append(hosts, host.ConnectAddress().String())
}
r.hp.SetHosts(hosts)
}
func (r *hostPoolHostPolicy) HostUp(host *HostInfo) {
r.AddHost(host)
}
func (r *hostPoolHostPolicy) HostDown(host *HostInfo) {
r.RemoveHost(host)
}
func (r *hostPoolHostPolicy) Pick(qry ExecutableQuery) NextHost {
return func() SelectedHost {
r.mu.RLock()
defer r.mu.RUnlock()
if len(r.hostMap) == 0 {
return nil
}
hostR := r.hp.Get()
host, ok := r.hostMap[hostR.Host()]
if !ok {
return nil
}
return selectedHostPoolHost{
policy: r,
info: host,
hostR: hostR,
}
}
}
// selectedHostPoolHost is a host returned by the hostPoolHostPolicy and
// implements the SelectedHost interface
type selectedHostPoolHost struct {
policy *hostPoolHostPolicy
info *HostInfo
hostR hostpool.HostPoolResponse
}
func (host selectedHostPoolHost) Info() *HostInfo {
return host.info
}
func (host selectedHostPoolHost) Mark(err error) {
ip := host.info.ConnectAddress().String()
host.policy.mu.RLock()
defer host.policy.mu.RUnlock()
if _, ok := host.policy.hostMap[ip]; !ok {
// host was removed between pick and mark
return
}
host.hostR.Mark(err)
}
type dcAwareRR struct {
local string
localHosts cowHostList
remoteHosts cowHostList
}
// DCAwareRoundRobinPolicy is a host selection policies which will prioritize and
// return hosts which are in the local datacentre before returning hosts in all
// other datercentres
func DCAwareRoundRobinPolicy(localDC string) HostSelectionPolicy {
return &dcAwareRR{local: localDC}
}
func (d *dcAwareRR) Init(*Session) {}
func (d *dcAwareRR) KeyspaceChanged(KeyspaceUpdateEvent) {}
func (d *dcAwareRR) SetPartitioner(p string) {}
func (d *dcAwareRR) IsLocal(host *HostInfo) bool {
return host.DataCenter() == d.local
}
func (d *dcAwareRR) AddHost(host *HostInfo) {
if d.IsLocal(host) {
d.localHosts.add(host)
} else {
d.remoteHosts.add(host)
}
}
func (d *dcAwareRR) RemoveHost(host *HostInfo) {
if d.IsLocal(host) {
d.localHosts.remove(host.ConnectAddress())
} else {
d.remoteHosts.remove(host.ConnectAddress())
}
}
func (d *dcAwareRR) HostUp(host *HostInfo) { d.AddHost(host) }
func (d *dcAwareRR) HostDown(host *HostInfo) { d.RemoveHost(host) }
var randSeed int64
func init() {
p := make([]byte, 8)
if _, err := crand.Read(p); err != nil {
panic(err)
}
randSeed = int64(binary.BigEndian.Uint64(p))
}
func randSource() rand.Source {
return rand.NewSource(atomic.AddInt64(&randSeed, 1))
}
func roundRobbin(hosts []*HostInfo) NextHost {
var i int
return func() SelectedHost {
for i < len(hosts) {
h := hosts[i]
i++
if h.IsUp() {
return (*selectedHost)(h)
}
}
return nil
}
}
func (d *dcAwareRR) Pick(q ExecutableQuery) NextHost {
local := d.localHosts.get()
remote := d.remoteHosts.get()
hosts := make([]*HostInfo, len(local)+len(remote))
n := copy(hosts, local)
copy(hosts[n:], remote)
// TODO: use random chose-2 but that will require plumbing information
// about connection/host load to here
r := rand.New(randSource())
for _, l := range [][]*HostInfo{hosts[:len(local)], hosts[len(local):]} {
r.Shuffle(len(l), func(i, j int) {
l[i], l[j] = l[j], l[i]
})
}
return roundRobbin(hosts)
}
// ConvictionPolicy interface is used by gocql to determine if a host should be
// marked as DOWN based on the error and host info
type ConvictionPolicy interface {
// Implementations should return `true` if the host should be convicted, `false` otherwise.
AddFailure(error error, host *HostInfo) bool
//Implementations should clear out any convictions or state regarding the host.
Reset(host *HostInfo)
}
// SimpleConvictionPolicy implements a ConvictionPolicy which convicts all hosts
// regardless of error
type SimpleConvictionPolicy struct {
}
func (e *SimpleConvictionPolicy) AddFailure(error error, host *HostInfo) bool {
return true
}
func (e *SimpleConvictionPolicy) Reset(host *HostInfo) {}
// ReconnectionPolicy interface is used by gocql to determine if reconnection
// can be attempted after connection error. The interface allows gocql users
// to implement their own logic to determine how to attempt reconnection.
//
type ReconnectionPolicy interface {
GetInterval(currentRetry int) time.Duration
GetMaxRetries() int
}
// ConstantReconnectionPolicy has simple logic for returning a fixed reconnection interval.
//
// Examples of usage:
//
// cluster.ReconnectionPolicy = &gocql.ConstantReconnectionPolicy{MaxRetries: 10, Interval: 8 * time.Second}
//
type ConstantReconnectionPolicy struct {
MaxRetries int
Interval time.Duration
}
func (c *ConstantReconnectionPolicy) GetInterval(currentRetry int) time.Duration {
return c.Interval
}
func (c *ConstantReconnectionPolicy) GetMaxRetries() int {
return c.MaxRetries
}
// ExponentialReconnectionPolicy returns a growing reconnection interval.
type ExponentialReconnectionPolicy struct {
MaxRetries int
InitialInterval time.Duration
}
func (e *ExponentialReconnectionPolicy) GetInterval(currentRetry int) time.Duration {
return getExponentialTime(e.InitialInterval, math.MaxInt16*time.Second, e.GetMaxRetries())
}
func (e *ExponentialReconnectionPolicy) GetMaxRetries() int {
return e.MaxRetries
}
type SpeculativeExecutionPolicy interface {
Attempts() int
Delay() time.Duration
}
type NonSpeculativeExecution struct{}
func (sp NonSpeculativeExecution) Attempts() int { return 0 } // No additional attempts
func (sp NonSpeculativeExecution) Delay() time.Duration { return 1 } // The delay. Must be positive to be used in a ticker.
type SimpleSpeculativeExecution struct {
NumAttempts int
TimeoutDelay time.Duration
}
func (sp *SimpleSpeculativeExecution) Attempts() int { return sp.NumAttempts }
func (sp *SimpleSpeculativeExecution) Delay() time.Duration { return sp.TimeoutDelay }
|