1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// Copyright (C) 2013-2018 by Maxim Bublis <b@codemonkey.ru>
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
package uuid
import (
"crypto/md5"
"crypto/rand"
"crypto/sha1"
"encoding/binary"
"hash"
"io"
"net"
"sync"
"time"
)
// Difference in 100-nanosecond intervals between
// UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970).
const epochStart = 122192928000000000
// EpochFunc is the function type used to provide the current time.
type EpochFunc func() time.Time
// HWAddrFunc is the function type used to provide hardware (MAC) addresses.
type HWAddrFunc func() (net.HardwareAddr, error)
// DefaultGenerator is the default UUID Generator used by this package.
var DefaultGenerator Generator = NewGen()
// NewV1 returns a UUID based on the current timestamp and MAC address.
func NewV1() (UUID, error) {
return DefaultGenerator.NewV1()
}
// NewV1 returns a UUID based on the provided timestamp and MAC address.
func NewV1AtTime(atTime time.Time) (UUID, error) {
return DefaultGenerator.NewV1AtTime(atTime)
}
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
func NewV3(ns UUID, name string) UUID {
return DefaultGenerator.NewV3(ns, name)
}
// NewV4 returns a randomly generated UUID.
func NewV4() (UUID, error) {
return DefaultGenerator.NewV4()
}
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
func NewV5(ns UUID, name string) UUID {
return DefaultGenerator.NewV5(ns, name)
}
// NewV6 returns a k-sortable UUID based on the current timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
func NewV6() (UUID, error) {
return DefaultGenerator.NewV6()
}
// NewV6 returns a k-sortable UUID based on the provided timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
func NewV6AtTime(atTime time.Time) (UUID, error) {
return DefaultGenerator.NewV6AtTime(atTime)
}
// NewV7 returns a k-sortable UUID based on the current millisecond-precision
// UNIX epoch and 74 bits of pseudorandom data. It supports single-node batch
// generation (multiple UUIDs in the same timestamp) with a Monotonic Random counter.
func NewV7() (UUID, error) {
return DefaultGenerator.NewV7()
}
// NewV7 returns a k-sortable UUID based on the provided millisecond-precision
// UNIX epoch and 74 bits of pseudorandom data. It supports single-node batch
// generation (multiple UUIDs in the same timestamp) with a Monotonic Random counter.
func NewV7AtTime(atTime time.Time) (UUID, error) {
return DefaultGenerator.NewV7AtTime(atTime)
}
// Generator provides an interface for generating UUIDs.
type Generator interface {
NewV1() (UUID, error)
NewV1AtTime(time.Time) (UUID, error)
NewV3(ns UUID, name string) UUID
NewV4() (UUID, error)
NewV5(ns UUID, name string) UUID
NewV6() (UUID, error)
NewV6AtTime(time.Time) (UUID, error)
NewV7() (UUID, error)
NewV7AtTime(time.Time) (UUID, error)
}
// Gen is a reference UUID generator based on the specifications laid out in
// RFC-9562 and DCE 1.1: Authentication and Security Services. This type
// satisfies the Generator interface as defined in this package.
//
// For consumers who are generating V1 UUIDs, but don't want to expose the MAC
// address of the node generating the UUIDs, the NewGenWithHWAF() function has been
// provided as a convenience. See the function's documentation for more info.
//
// The authors of this package do not feel that the majority of users will need
// to obfuscate their MAC address, and so we recommend using NewGen() to create
// a new generator.
type Gen struct {
clockSequenceOnce sync.Once
hardwareAddrOnce sync.Once
storageMutex sync.Mutex
rand io.Reader
epochFunc EpochFunc
hwAddrFunc HWAddrFunc
lastTime uint64
clockSequence uint16
hardwareAddr [6]byte
}
// GenOption is a function type that can be used to configure a Gen generator.
type GenOption func(*Gen)
// interface check -- build will fail if *Gen doesn't satisfy Generator
var _ Generator = (*Gen)(nil)
// NewGen returns a new instance of Gen with some default values set. Most
// people should use this.
func NewGen() *Gen {
return NewGenWithHWAF(defaultHWAddrFunc)
}
// NewGenWithHWAF builds a new UUID generator with the HWAddrFunc provided. Most
// consumers should use NewGen() instead.
//
// This is used so that consumers can generate their own MAC addresses, for use
// in the generated UUIDs, if there is some concern about exposing the physical
// address of the machine generating the UUID.
//
// The Gen generator will only invoke the HWAddrFunc once, and cache that MAC
// address for all the future UUIDs generated by it. If you'd like to switch the
// MAC address being used, you'll need to create a new generator using this
// function.
func NewGenWithHWAF(hwaf HWAddrFunc) *Gen {
return NewGenWithOptions(WithHWAddrFunc(hwaf))
}
// NewGenWithOptions returns a new instance of Gen with the options provided.
// Most people should use NewGen() or NewGenWithHWAF() instead.
//
// To customize the generator, you can pass in one or more GenOption functions.
// For example:
//
// gen := NewGenWithOptions(
// WithHWAddrFunc(myHWAddrFunc),
// WithEpochFunc(myEpochFunc),
// WithRandomReader(myRandomReader),
// )
//
// NewGenWithOptions(WithHWAddrFunc(myHWAddrFunc)) is equivalent to calling
// NewGenWithHWAF(myHWAddrFunc)
// NewGenWithOptions() is equivalent to calling NewGen()
func NewGenWithOptions(opts ...GenOption) *Gen {
gen := &Gen{
epochFunc: time.Now,
hwAddrFunc: defaultHWAddrFunc,
rand: rand.Reader,
}
for _, opt := range opts {
opt(gen)
}
return gen
}
// WithHWAddrFunc is a GenOption that allows you to provide your own HWAddrFunc
// function.
// When this option is nil, the defaultHWAddrFunc is used.
func WithHWAddrFunc(hwaf HWAddrFunc) GenOption {
return func(gen *Gen) {
if hwaf == nil {
hwaf = defaultHWAddrFunc
}
gen.hwAddrFunc = hwaf
}
}
// WithEpochFunc is a GenOption that allows you to provide your own EpochFunc
// function.
// When this option is nil, time.Now is used.
func WithEpochFunc(epochf EpochFunc) GenOption {
return func(gen *Gen) {
if epochf == nil {
epochf = time.Now
}
gen.epochFunc = epochf
}
}
// WithRandomReader is a GenOption that allows you to provide your own random
// reader.
// When this option is nil, the default rand.Reader is used.
func WithRandomReader(reader io.Reader) GenOption {
return func(gen *Gen) {
if reader == nil {
reader = rand.Reader
}
gen.rand = reader
}
}
// NewV1 returns a UUID based on the current timestamp and MAC address.
func (g *Gen) NewV1() (UUID, error) {
return g.NewV1AtTime(g.epochFunc())
}
// NewV1AtTime returns a UUID based on the provided timestamp and current MAC address.
func (g *Gen) NewV1AtTime(atTime time.Time) (UUID, error) {
u := UUID{}
timeNow, clockSeq, err := g.getClockSequence(false, atTime)
if err != nil {
return Nil, err
}
binary.BigEndian.PutUint32(u[0:], uint32(timeNow))
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32))
binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48))
binary.BigEndian.PutUint16(u[8:], clockSeq)
hardwareAddr, err := g.getHardwareAddr()
if err != nil {
return Nil, err
}
copy(u[10:], hardwareAddr)
u.SetVersion(V1)
u.SetVariant(VariantRFC9562)
return u, nil
}
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
func (g *Gen) NewV3(ns UUID, name string) UUID {
u := newFromHash(md5.New(), ns, name)
u.SetVersion(V3)
u.SetVariant(VariantRFC9562)
return u
}
// NewV4 returns a randomly generated UUID.
func (g *Gen) NewV4() (UUID, error) {
u := UUID{}
if _, err := io.ReadFull(g.rand, u[:]); err != nil {
return Nil, err
}
u.SetVersion(V4)
u.SetVariant(VariantRFC9562)
return u, nil
}
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
func (g *Gen) NewV5(ns UUID, name string) UUID {
u := newFromHash(sha1.New(), ns, name)
u.SetVersion(V5)
u.SetVariant(VariantRFC9562)
return u
}
// NewV6 returns a k-sortable UUID based on the current timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
func (g *Gen) NewV6() (UUID, error) {
return g.NewV6AtTime(g.epochFunc())
}
// NewV6 returns a k-sortable UUID based on the provided timestamp and 48 bits of
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
// order being adjusted to allow the UUID to be k-sortable.
func (g *Gen) NewV6AtTime(atTime time.Time) (UUID, error) {
/* https://datatracker.ietf.org/doc/html/rfc9562#name-uuid-version-6
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| time_high |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| time_mid | ver | time_low |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|var| clock_seq | node |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| node |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */
var u UUID
timeNow, _, err := g.getClockSequence(false, atTime)
if err != nil {
return Nil, err
}
binary.BigEndian.PutUint32(u[0:], uint32(timeNow>>28)) // set time_high
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>12)) // set time_mid
binary.BigEndian.PutUint16(u[6:], uint16(timeNow&0xfff)) // set time_low (minus four version bits)
// Based on the RFC 9562 recommendation that this data be fully random and not a monotonic counter,
//we do NOT support batching version 6 UUIDs.
//set clock_seq (14 bits) and node (48 bits) pseudo-random bits (first 2 bits will be overridden)
if _, err = io.ReadFull(g.rand, u[8:]); err != nil {
return Nil, err
}
u.SetVersion(V6)
//overwrite first 2 bits of byte[8] for the variant
u.SetVariant(VariantRFC9562)
return u, nil
}
// NewV7 returns a k-sortable UUID based on the current millisecond-precision
// UNIX epoch and 74 bits of pseudorandom data.
func (g *Gen) NewV7() (UUID, error) {
return g.NewV7AtTime(g.epochFunc())
}
// NewV7 returns a k-sortable UUID based on the provided millisecond-precision
// UNIX epoch and 74 bits of pseudorandom data.
func (g *Gen) NewV7AtTime(atTime time.Time) (UUID, error) {
var u UUID
/* https://datatracker.ietf.org/doc/html/rfc9562#name-uuid-version-7
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| unix_ts_ms |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| unix_ts_ms | ver | rand_a |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|var| rand_b |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| rand_b |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */
ms, clockSeq, err := g.getClockSequence(true, atTime)
if err != nil {
return Nil, err
}
//UUIDv7 features a 48 bit timestamp. First 32bit (4bytes) represents seconds since 1970, followed by 2 bytes for the ms granularity.
u[0] = byte(ms >> 40) //1-6 bytes: big-endian unsigned number of Unix epoch timestamp
u[1] = byte(ms >> 32)
u[2] = byte(ms >> 24)
u[3] = byte(ms >> 16)
u[4] = byte(ms >> 8)
u[5] = byte(ms)
//Support batching by using a monotonic pseudo-random sequence,
//as described in RFC 9562 section 6.2, Method 1.
//The 6th byte contains the version and partially rand_a data.
//We will lose the most significant bites from the clockSeq (with SetVersion), but it is ok,
//we need the least significant that contains the counter to ensure the monotonic property
binary.BigEndian.PutUint16(u[6:8], clockSeq) // set rand_a with clock seq which is random and monotonic
//override first 4bits of u[6].
u.SetVersion(V7)
//set rand_b 64bits of pseudo-random bits (first 2 will be overridden)
if _, err = io.ReadFull(g.rand, u[8:16]); err != nil {
return Nil, err
}
//override first 2 bits of byte[8] for the variant
u.SetVariant(VariantRFC9562)
return u, nil
}
// getClockSequence returns the epoch and clock sequence of the provided time,
// used for generating V1,V6 and V7 UUIDs.
//
// When useUnixTSMs is false, it uses the Coordinated Universal Time (UTC) as a count of
// 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of Gregorian
// reform to the Christian calendar).
func (g *Gen) getClockSequence(useUnixTSMs bool, atTime time.Time) (uint64, uint16, error) {
var err error
g.clockSequenceOnce.Do(func() {
buf := make([]byte, 2)
if _, err = io.ReadFull(g.rand, buf); err != nil {
return
}
g.clockSequence = binary.BigEndian.Uint16(buf)
})
if err != nil {
return 0, 0, err
}
g.storageMutex.Lock()
defer g.storageMutex.Unlock()
var timeNow uint64
if useUnixTSMs {
timeNow = uint64(atTime.UnixMilli())
} else {
timeNow = g.getEpoch(atTime)
}
// Clock didn't change since last UUID generation.
// Should increase clock sequence.
if timeNow <= g.lastTime {
g.clockSequence++
}
g.lastTime = timeNow
return timeNow, g.clockSequence, nil
}
// Returns the hardware address.
func (g *Gen) getHardwareAddr() ([]byte, error) {
var err error
g.hardwareAddrOnce.Do(func() {
var hwAddr net.HardwareAddr
if hwAddr, err = g.hwAddrFunc(); err == nil {
copy(g.hardwareAddr[:], hwAddr)
return
}
// Initialize hardwareAddr randomly in case
// of real network interfaces absence.
if _, err = io.ReadFull(g.rand, g.hardwareAddr[:]); err != nil {
return
}
// Set multicast bit as recommended by RFC-9562
g.hardwareAddr[0] |= 0x01
})
if err != nil {
return []byte{}, err
}
return g.hardwareAddr[:], nil
}
// Returns the difference between UUID epoch (October 15, 1582)
// and the provided time in 100-nanosecond intervals.
func (g *Gen) getEpoch(atTime time.Time) uint64 {
return epochStart + uint64(atTime.UnixNano()/100)
}
// Returns the UUID based on the hashing of the namespace UUID and name.
func newFromHash(h hash.Hash, ns UUID, name string) UUID {
u := UUID{}
h.Write(ns[:])
h.Write([]byte(name))
copy(u[:], h.Sum(nil))
return u
}
var netInterfaces = net.Interfaces
// Returns the hardware address.
func defaultHWAddrFunc() (net.HardwareAddr, error) {
ifaces, err := netInterfaces()
if err != nil {
return []byte{}, err
}
for _, iface := range ifaces {
if len(iface.HardwareAddr) >= 6 {
return iface.HardwareAddr, nil
}
}
return []byte{}, ErrNoHwAddressFound
}
|