1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
Copyright 2016 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package r3
import (
"fmt"
"math/big"
)
const (
// prec is the number of bits of precision to use for the Float values.
// To keep things simple, we use the maximum allowable precision on big
// values. This allows us to handle all values we expect in the s2 library.
prec = big.MaxPrec
)
// define some commonly referenced values.
var (
precise0 = precInt(0)
precise1 = precInt(1)
)
// precStr wraps the conversion from a string into a big.Float. For results that
// actually can be represented exactly, this should only be used on values that
// are integer multiples of integer powers of 2.
func precStr(s string) *big.Float {
// Explicitly ignoring the bool return for this usage.
f, _ := new(big.Float).SetPrec(prec).SetString(s)
return f
}
func precInt(i int64) *big.Float {
return new(big.Float).SetPrec(prec).SetInt64(i)
}
func precFloat(f float64) *big.Float {
return new(big.Float).SetPrec(prec).SetFloat64(f)
}
func precAdd(a, b *big.Float) *big.Float {
return new(big.Float).SetPrec(prec).Add(a, b)
}
func precSub(a, b *big.Float) *big.Float {
return new(big.Float).SetPrec(prec).Sub(a, b)
}
func precMul(a, b *big.Float) *big.Float {
return new(big.Float).SetPrec(prec).Mul(a, b)
}
// PreciseVector represents a point in ℝ³ using high-precision values.
// Note that this is NOT a complete implementation because there are some
// operations that Vector supports that are not feasible with arbitrary precision
// math. (e.g., methods that need divison like Normalize, or methods needing a
// square root operation such as Norm)
type PreciseVector struct {
X, Y, Z *big.Float
}
// PreciseVectorFromVector creates a high precision vector from the given Vector.
func PreciseVectorFromVector(v Vector) PreciseVector {
return NewPreciseVector(v.X, v.Y, v.Z)
}
// NewPreciseVector creates a high precision vector from the given floating point values.
func NewPreciseVector(x, y, z float64) PreciseVector {
return PreciseVector{
X: precFloat(x),
Y: precFloat(y),
Z: precFloat(z),
}
}
// Vector returns this precise vector converted to a Vector.
func (v PreciseVector) Vector() Vector {
// The accuracy flag is ignored on these conversions back to float64.
x, _ := v.X.Float64()
y, _ := v.Y.Float64()
z, _ := v.Z.Float64()
return Vector{x, y, z}
}
// Equals reports whether v and ov are equal.
func (v PreciseVector) Equals(ov PreciseVector) bool {
return v.X.Cmp(ov.X) == 0 && v.Y.Cmp(ov.Y) == 0 && v.Z.Cmp(ov.Z) == 0
}
func (v PreciseVector) String() string {
return fmt.Sprintf("(%v, %v, %v)", v.X, v.Y, v.Z)
}
// Norm2 returns the square of the norm.
func (v PreciseVector) Norm2() *big.Float { return v.Dot(v) }
// IsUnit reports whether this vector is of unit length.
func (v PreciseVector) IsUnit() bool {
return v.Norm2().Cmp(precise1) == 0
}
// Abs returns the vector with nonnegative components.
func (v PreciseVector) Abs() PreciseVector {
return PreciseVector{
X: new(big.Float).Abs(v.X),
Y: new(big.Float).Abs(v.Y),
Z: new(big.Float).Abs(v.Z),
}
}
// Add returns the standard vector sum of v and ov.
func (v PreciseVector) Add(ov PreciseVector) PreciseVector {
return PreciseVector{
X: precAdd(v.X, ov.X),
Y: precAdd(v.Y, ov.Y),
Z: precAdd(v.Z, ov.Z),
}
}
// Sub returns the standard vector difference of v and ov.
func (v PreciseVector) Sub(ov PreciseVector) PreciseVector {
return PreciseVector{
X: precSub(v.X, ov.X),
Y: precSub(v.Y, ov.Y),
Z: precSub(v.Z, ov.Z),
}
}
// Mul returns the standard scalar product of v and f.
func (v PreciseVector) Mul(f *big.Float) PreciseVector {
return PreciseVector{
X: precMul(v.X, f),
Y: precMul(v.Y, f),
Z: precMul(v.Z, f),
}
}
// MulByFloat64 returns the standard scalar product of v and f.
func (v PreciseVector) MulByFloat64(f float64) PreciseVector {
return v.Mul(precFloat(f))
}
// Dot returns the standard dot product of v and ov.
func (v PreciseVector) Dot(ov PreciseVector) *big.Float {
return precAdd(precMul(v.X, ov.X), precAdd(precMul(v.Y, ov.Y), precMul(v.Z, ov.Z)))
}
// Cross returns the standard cross product of v and ov.
func (v PreciseVector) Cross(ov PreciseVector) PreciseVector {
return PreciseVector{
X: precSub(precMul(v.Y, ov.Z), precMul(v.Z, ov.Y)),
Y: precSub(precMul(v.Z, ov.X), precMul(v.X, ov.Z)),
Z: precSub(precMul(v.X, ov.Y), precMul(v.Y, ov.X)),
}
}
// LargestComponent returns the axis that represents the largest component in this vector.
func (v PreciseVector) LargestComponent() Axis {
t := v.Abs()
if t.X.Cmp(t.Y) > 0 {
if t.X.Cmp(t.Z) > 0 {
return XAxis
}
return ZAxis
}
if t.Y.Cmp(t.Z) > 0 {
return YAxis
}
return ZAxis
}
// SmallestComponent returns the axis that represents the smallest component in this vector.
func (v PreciseVector) SmallestComponent() Axis {
t := v.Abs()
if t.X.Cmp(t.Y) < 0 {
if t.X.Cmp(t.Z) < 0 {
return XAxis
}
return ZAxis
}
if t.Y.Cmp(t.Z) < 0 {
return YAxis
}
return ZAxis
}
|