1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s1
import (
"math"
"strconv"
)
// Interval represents a closed interval on a unit circle.
// Zero-length intervals (where Lo == Hi) represent single points.
// If Lo > Hi then the interval is "inverted".
// The point at (-1, 0) on the unit circle has two valid representations,
// [π,π] and [-π,-π]. We normalize the latter to the former in IntervalFromEndpoints.
// There are two special intervals that take advantage of that:
// - the full interval, [-π,π], and
// - the empty interval, [π,-π].
// Treat the exported fields as read-only.
type Interval struct {
Lo, Hi float64
}
// IntervalFromEndpoints constructs a new interval from endpoints.
// Both arguments must be in the range [-π,π]. This function allows inverted intervals
// to be created.
func IntervalFromEndpoints(lo, hi float64) Interval {
i := Interval{lo, hi}
if lo == -math.Pi && hi != math.Pi {
i.Lo = math.Pi
}
if hi == -math.Pi && lo != math.Pi {
i.Hi = math.Pi
}
return i
}
// IntervalFromPointPair returns the minimal interval containing the two given points.
// Both arguments must be in [-π,π].
func IntervalFromPointPair(a, b float64) Interval {
if a == -math.Pi {
a = math.Pi
}
if b == -math.Pi {
b = math.Pi
}
if positiveDistance(a, b) <= math.Pi {
return Interval{a, b}
}
return Interval{b, a}
}
// EmptyInterval returns an empty interval.
func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
// FullInterval returns a full interval.
func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
// IsValid reports whether the interval is valid.
func (i Interval) IsValid() bool {
return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
!(i.Lo == -math.Pi && i.Hi != math.Pi) &&
!(i.Hi == -math.Pi && i.Lo != math.Pi))
}
// IsFull reports whether the interval is full.
func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
// IsEmpty reports whether the interval is empty.
func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
// Invert returns the interval with endpoints swapped.
func (i Interval) Invert() Interval {
return Interval{i.Hi, i.Lo}
}
// Center returns the midpoint of the interval.
// It is undefined for full and empty intervals.
func (i Interval) Center() float64 {
c := 0.5 * (i.Lo + i.Hi)
if !i.IsInverted() {
return c
}
if c <= 0 {
return c + math.Pi
}
return c - math.Pi
}
// Length returns the length of the interval.
// The length of an empty interval is negative.
func (i Interval) Length() float64 {
l := i.Hi - i.Lo
if l >= 0 {
return l
}
l += 2 * math.Pi
if l > 0 {
return l
}
return -1
}
// Assumes p ∈ (-π,π].
func (i Interval) fastContains(p float64) bool {
if i.IsInverted() {
return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
}
return p >= i.Lo && p <= i.Hi
}
// Contains returns true iff the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) Contains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
return i.fastContains(p)
}
// ContainsInterval returns true iff the interval contains oi.
func (i Interval) ContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return oi.Lo >= i.Lo && oi.Hi <= i.Hi
}
// InteriorContains returns true iff the interior of the interval contains p.
// Assumes p ∈ [-π,π].
func (i Interval) InteriorContains(p float64) bool {
if p == -math.Pi {
p = math.Pi
}
if i.IsInverted() {
return p > i.Lo || p < i.Hi
}
return (p > i.Lo && p < i.Hi) || i.IsFull()
}
// InteriorContainsInterval returns true iff the interior of the interval contains oi.
func (i Interval) InteriorContainsInterval(oi Interval) bool {
if i.IsInverted() {
if oi.IsInverted() {
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
}
return oi.Lo > i.Lo || oi.Hi < i.Hi
}
if oi.IsInverted() {
return i.IsFull() || oi.IsEmpty()
}
return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
}
// Intersects returns true iff the interval contains any points in common with oi.
func (i Interval) Intersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
if oi.IsInverted() {
return oi.Lo <= i.Hi || oi.Hi >= i.Lo
}
return oi.Lo <= i.Hi && oi.Hi >= i.Lo
}
// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
func (i Interval) InteriorIntersects(oi Interval) bool {
if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
return false
}
if i.IsInverted() {
return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
}
if oi.IsInverted() {
return oi.Lo < i.Hi || oi.Hi > i.Lo
}
return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
}
// Compute distance from a to b in [0,2π], in a numerically stable way.
func positiveDistance(a, b float64) float64 {
d := b - a
if d >= 0 {
return d
}
return (b + math.Pi) - (a - math.Pi)
}
// Union returns the smallest interval that contains both the interval and oi.
func (i Interval) Union(oi Interval) Interval {
if oi.IsEmpty() {
return i
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i ∪ oi is the full interval.
if i.ContainsInterval(oi) {
return i
}
return FullInterval()
}
return Interval{i.Lo, oi.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{oi.Lo, i.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if i.IsEmpty() || oi.fastContains(i.Lo) {
return oi
}
// This is the only hard case where we need to find the closest pair of endpoints.
if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
return Interval{oi.Lo, i.Hi}
}
return Interval{i.Lo, oi.Hi}
}
// Intersection returns the smallest interval that contains the intersection of the interval and oi.
func (i Interval) Intersection(oi Interval) Interval {
if oi.IsEmpty() {
return EmptyInterval()
}
if i.fastContains(oi.Lo) {
if i.fastContains(oi.Hi) {
// Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
// In the first case we want to return i (which is shorter than oi).
// In the second case one of them is inverted, and the smallest interval
// that covers the two disjoint pieces is the shorter of i and oi.
// We thus want to pick the shorter of i and oi in both cases.
if oi.Length() < i.Length() {
return oi
}
return i
}
return Interval{oi.Lo, i.Hi}
}
if i.fastContains(oi.Hi) {
return Interval{i.Lo, oi.Hi}
}
// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
if oi.fastContains(i.Lo) {
return i
}
return EmptyInterval()
}
// AddPoint returns the interval expanded by the minimum amount necessary such
// that it contains the given point "p" (an angle in the range [-Pi, Pi]).
func (i Interval) AddPoint(p float64) Interval {
if math.Abs(p) > math.Pi {
return i
}
if p == -math.Pi {
p = math.Pi
}
if i.fastContains(p) {
return i
}
if i.IsEmpty() {
return Interval{p, p}
}
if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
return Interval{p, i.Hi}
}
return Interval{i.Lo, p}
}
// Define the maximum rounding error for arithmetic operations. Depending on the
// platform the mantissa precision may be different than others, so we choose to
// use specific values to be consistent across all.
// The values come from the C++ implementation.
var (
// epsilon is a small number that represents a reasonable level of noise between two
// values that can be considered to be equal.
epsilon = 1e-15
// dblEpsilon is a smaller number for values that require more precision.
dblEpsilon = 2.220446049e-16
)
// Expanded returns an interval that has been expanded on each side by margin.
// If margin is negative, then the function shrinks the interval on
// each side by margin instead. The resulting interval may be empty or
// full. Any expansion (positive or negative) of a full interval remains
// full, and any expansion of an empty interval remains empty.
func (i Interval) Expanded(margin float64) Interval {
if margin >= 0 {
if i.IsEmpty() {
return i
}
// Check whether this interval will be full after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
return FullInterval()
}
} else {
if i.IsFull() {
return i
}
// Check whether this interval will be empty after expansion, allowing
// for a rounding error when computing each endpoint.
if i.Length()+2*margin-2*dblEpsilon <= 0 {
return EmptyInterval()
}
}
result := IntervalFromEndpoints(
math.Remainder(i.Lo-margin, 2*math.Pi),
math.Remainder(i.Hi+margin, 2*math.Pi),
)
if result.Lo <= -math.Pi {
result.Lo = math.Pi
}
return result
}
func (i Interval) String() string {
// like "[%.7f, %.7f]"
return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
}
// BUG(dsymonds): The major differences from the C++ version are:
// - no validity checking on construction, etc. (not a bug?)
// - a few operations
|