1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/*
Copyright 2015 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s2
import (
"math"
"testing"
"github.com/golang/geo/r1"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
var (
// The northern hemisphere, defined using two pairs of antipodal points.
northHemi = LoopFromPoints(parsePoints("0:-180, 0:-90, 0:0, 0:90"))
// The northern hemisphere, defined using three points 120 degrees apart.
northHemi3 = LoopFromPoints(parsePoints("0:-180, 0:-60, 0:60"))
// The southern hemisphere, defined using two pairs of antipodal points.
southHemi = LoopFromPoints(parsePoints("0:90, 0:0, 0:-90, 0:-180"))
// The western hemisphere, defined using two pairs of antipodal points.
westHemi = LoopFromPoints(parsePoints("0:-180, -90:0, 0:0, 90:0"))
// The eastern hemisphere, defined using two pairs of antipodal points.
eastHemi = LoopFromPoints(parsePoints("90:0, 0:0, -90:0, 0:-180"))
// The "near" hemisphere, defined using two pairs of antipodal points.
nearHemi = LoopFromPoints(parsePoints("0:-90, -90:0, 0:90, 90:0"))
// The "far" hemisphere, defined using two pairs of antipodal points.
farHemi = LoopFromPoints(parsePoints("90:0, 0:90, -90:0, 0:-90"))
// A spiral stripe that slightly over-wraps the equator.
candyCane = LoopFromPoints(parsePoints("-20:150, -20:-70, 0:70, 10:-150, 10:70, -10:-70"))
// A small clockwise loop in the northern & eastern hemisperes.
smallNECW = LoopFromPoints(parsePoints("35:20, 45:20, 40:25"))
// Loop around the north pole at 80 degrees.
arctic80 = LoopFromPoints(parsePoints("80:-150, 80:-30, 80:90"))
// Loop around the south pole at 80 degrees.
antarctic80 = LoopFromPoints(parsePoints("-80:120, -80:0, -80:-120"))
// A completely degenerate triangle along the equator that RobustCCW()
// considers to be CCW.
lineTriangle = LoopFromPoints(parsePoints("0:1, 0:2, 0:3"))
// A nearly-degenerate CCW chevron near the equator with very long sides
// (about 80 degrees). Its area is less than 1e-640, which is too small
// to represent in double precision.
skinnyChevron = LoopFromPoints(parsePoints("0:0, -1e-320:80, 0:1e-320, 1e-320:80"))
// A diamond-shaped loop around the point 0:180.
loopA = LoopFromPoints(parsePoints("0:178, -1:180, 0:-179, 1:-180"))
// Like loopA, but the vertices are at leaf cell centers.
snappedLoopA = LoopFromPoints([]Point{
CellIDFromLatLng(parseLatLngs("0:178")[0]).Point(),
CellIDFromLatLng(parseLatLngs("-1:180")[0]).Point(),
CellIDFromLatLng(parseLatLngs("0:-179")[0]).Point(),
CellIDFromLatLng(parseLatLngs("1:-180")[0]).Point(),
})
// A different diamond-shaped loop around the point 0:180.
loopB = LoopFromPoints(parsePoints("0:179, -1:180, 0:-178, 1:-180"))
// The intersection of A and B.
aIntersectB = LoopFromPoints(parsePoints("0:179, -1:180, 0:-179, 1:-180"))
// The union of A and B.
aUnionB = LoopFromPoints(parsePoints("0:178, -1:180, 0:-178, 1:-180"))
// A minus B (concave).
aMinusB = LoopFromPoints(parsePoints("0:178, -1:180, 0:179, 1:-180"))
// B minus A (concave).
bMinusA = LoopFromPoints(parsePoints("0:-179, -1:180, 0:-178, 1:-180"))
// A shape gotten from A by adding a triangle to one edge, and
// subtracting a triangle from the opposite edge.
loopC = LoopFromPoints(parsePoints("0:178, 0:180, -1:180, 0:-179, 1:-179, 1:-180"))
// A shape gotten from A by adding a triangle to one edge, and
// adding another triangle to the opposite edge.
loopD = LoopFromPoints(parsePoints("0:178, -1:178, -1:180, 0:-179, 1:-179, 1:-180"))
// 3------------2
// | | ^
// | 7-8 b-c | |
// | | | | | | Latitude |
// 0--6-9--a-d--1 |
// | | | | |
// | f-e | +----------->
// | | Longitude
// 4------------5
//
// Important: It is not okay to skip over collinear vertices when
// defining these loops (e.g. to define loop E as "0,1,2,3") because S2
// uses symbolic perturbations to ensure that no three vertices are
// *ever* considered collinear (e.g., vertices 0, 6, 9 are not
// collinear). In other words, it is unpredictable (modulo knowing the
// details of the symbolic perturbations) whether 0123 contains 06123
// for example.
// Loop E: 0,6,9,a,d,1,2,3
// Loop F: 0,4,5,1,d,a,9,6
// Loop G: 0,6,7,8,9,a,b,c,d,1,2,3
// Loop H: 0,6,f,e,9,a,b,c,d,1,2,3
// Loop I: 7,6,f,e,9,8
loopE = LoopFromPoints(parsePoints("0:30, 0:34, 0:36, 0:39, 0:41, 0:44, 30:44, 30:30"))
loopF = LoopFromPoints(parsePoints("0:30, -30:30, -30:44, 0:44, 0:41, 0:39, 0:36, 0:34"))
loopG = LoopFromPoints(parsePoints("0:30, 0:34, 10:34, 10:36, 0:36, 0:39, 10:39, 10:41, 0:41, 0:44, 30:44, 30:30"))
loopH = LoopFromPoints(parsePoints("0:30, 0:34, -10:34, -10:36, 0:36, 0:39, 10:39, 10:41, 0:41, 0:44, 30:44, 30:30"))
loopI = LoopFromPoints(parsePoints("10:34, 0:34, -10:34, -10:36, 0:36, 10:36"))
)
func TestLoopEmptyAndFull(t *testing.T) {
emptyLoop := EmptyLoop()
if !emptyLoop.IsEmpty() {
t.Errorf("empty loop should be empty")
}
if emptyLoop.IsFull() {
t.Errorf("empty loop should not be full")
}
if !emptyLoop.isEmptyOrFull() {
t.Errorf("empty loop should pass IsEmptyOrFull")
}
fullLoop := FullLoop()
if fullLoop.IsEmpty() {
t.Errorf("full loop should not be empty")
}
if !fullLoop.IsFull() {
t.Errorf("full loop should be full")
}
if !fullLoop.isEmptyOrFull() {
t.Errorf("full loop should pass IsEmptyOrFull")
}
if emptyLoop.NumEdges() != 0 {
t.Errorf("empty loops should have no edges")
}
if emptyLoop.numChains() != 0 {
t.Errorf("empty loops should have no edge chains")
}
if fullLoop.NumEdges() != 0 {
t.Errorf("full loops should have no edges")
}
if fullLoop.numChains() != 0 {
t.Errorf("full loops should have no edge chains")
}
}
func TestLoopBasic(t *testing.T) {
shape := Shape(makeLoop("0:0, 0:1, 1:0"))
if got := shape.NumEdges(); got != 3 {
t.Errorf("shape.NumEdges = %d, want 3", got)
}
if got := shape.numChains(); got != 1 {
t.Errorf("shape.numChains = %d, want 1", got)
}
if got := shape.chainStart(0); got != 0 {
t.Errorf("shape.chainStart(0) = %d, want 3", got)
}
if got := shape.chainStart(1); got != 3 {
t.Errorf("shape.chainStart(1) = %d, want 3", got)
}
v2, v3 := shape.Edge(2)
if want := PointFromLatLng(LatLngFromDegrees(1, 0)); !v2.ApproxEqual(want) {
t.Errorf("shape.Edge(2) end A = %v, want %v", v2, want)
}
if want := PointFromLatLng(LatLngFromDegrees(0, 0)); !v3.ApproxEqual(want) {
t.Errorf("shape.Edge(2) end B = %v, want %v", v3, want)
}
if got := shape.dimension(); got != polygonGeometry {
t.Errorf("shape.dimension() = %d, want %v", got, polygonGeometry)
}
if !shape.HasInterior() {
t.Errorf("shape.HasInterior() = false, want true")
}
if shape.ContainsOrigin() {
t.Errorf("shape.ContainsOrigin() = true, want false")
}
}
func TestLoopRectBound(t *testing.T) {
if !EmptyLoop().RectBound().IsEmpty() {
t.Errorf("empty loop's RectBound should be empty")
}
if !FullLoop().RectBound().IsFull() {
t.Errorf("full loop's RectBound should be full")
}
if !candyCane.RectBound().Lng.IsFull() {
t.Errorf("candy cane loop's RectBound should have a full longitude range")
}
if got := candyCane.RectBound().Lat.Lo; got >= -0.349066 {
t.Errorf("candy cane loop's RectBound should have a lower latitude (%v) under -0.349066 radians", got)
}
if got := candyCane.RectBound().Lat.Hi; got <= 0.174533 {
t.Errorf("candy cane loop's RectBound should have an upper latitude (%v) over 0.174533 radians", got)
}
if !smallNECW.RectBound().IsFull() {
t.Errorf("small northeast clockwise loop's RectBound should be full")
}
if got, want := arctic80.RectBound(), rectFromDegrees(80, -180, 90, 180); !rectsApproxEqual(got, want, rectErrorLat, rectErrorLng) {
t.Errorf("arctic 80 loop's RectBound (%v) should be %v", got, want)
}
if got, want := antarctic80.RectBound(), rectFromDegrees(-90, -180, -80, 180); !rectsApproxEqual(got, want, rectErrorLat, rectErrorLng) {
t.Errorf("antarctic 80 loop's RectBound (%v) should be %v", got, want)
}
if !southHemi.RectBound().Lng.IsFull() {
t.Errorf("south hemi loop's RectBound should have a full longitude range")
}
got, want := southHemi.RectBound().Lat, r1.Interval{-math.Pi / 2, 0}
if !got.ApproxEqual(want) {
t.Errorf("south hemi loop's RectBound latitude interval (%v) should be %v", got, want)
}
// Create a loop that contains the complement of the arctic80 loop.
arctic80Inv := invert(arctic80)
// The highest latitude of each edge is attained at its midpoint.
mid := Point{arctic80Inv.vertices[0].Vector.Add(arctic80Inv.vertices[1].Vector).Mul(.5)}
if got, want := arctic80Inv.RectBound().Lat.Hi, float64(LatLngFromPoint(mid).Lat); math.Abs(got-want) > 10*dblEpsilon {
t.Errorf("arctic 80 inverse loop's RectBound should have a latutude hi of %v, got %v", got, want)
}
}
func TestLoopCapBound(t *testing.T) {
if !EmptyLoop().CapBound().IsEmpty() {
t.Errorf("empty loop's CapBound should be empty")
}
if !FullLoop().CapBound().IsFull() {
t.Errorf("full loop's CapBound should be full")
}
if !smallNECW.CapBound().IsFull() {
t.Errorf("small northeast clockwise loop's CapBound should be full")
}
if got, want := arctic80.CapBound(), rectFromDegrees(80, -180, 90, 180).CapBound(); !got.ApproxEqual(want) {
t.Errorf("arctic 80 loop's CapBound (%v) should be %v", got, want)
}
if got, want := antarctic80.CapBound(), rectFromDegrees(-90, -180, -80, 180).CapBound(); !got.ApproxEqual(want) {
t.Errorf("antarctic 80 loop's CapBound (%v) should be %v", got, want)
}
}
func invert(l *Loop) *Loop {
vertices := make([]Point, 0, len(l.vertices))
for i := len(l.vertices) - 1; i >= 0; i-- {
vertices = append(vertices, l.vertices[i])
}
return LoopFromPoints(vertices)
}
func TestLoopOriginInside(t *testing.T) {
if !northHemi.originInside {
t.Errorf("north hemisphere polygon should include origin")
}
if !northHemi3.originInside {
t.Errorf("north hemisphere 3 polygon should include origin")
}
if southHemi.originInside {
t.Errorf("south hemisphere polygon should not include origin")
}
if westHemi.originInside {
t.Errorf("west hemisphere polygon should not include origin")
}
if !eastHemi.originInside {
t.Errorf("east hemisphere polygon should include origin")
}
if nearHemi.originInside {
t.Errorf("near hemisphere polygon should not include origin")
}
if !farHemi.originInside {
t.Errorf("far hemisphere polygon should include origin")
}
if candyCane.originInside {
t.Errorf("candy cane polygon should not include origin")
}
if !smallNECW.originInside {
t.Errorf("smallNECW polygon should include origin")
}
if !arctic80.originInside {
t.Errorf("arctic 80 polygon should include origin")
}
if antarctic80.originInside {
t.Errorf("antarctic 80 polygon should not include origin")
}
if loopA.originInside {
t.Errorf("loop A polygon should not include origin")
}
}
func TestLoopContainsPoint(t *testing.T) {
north := Point{r3.Vector{0, 0, 1}}
south := Point{r3.Vector{0, 0, -1}}
if EmptyLoop().ContainsPoint(north) {
t.Errorf("empty loop should not not have any points")
}
if !FullLoop().ContainsPoint(south) {
t.Errorf("full loop should have full point vertex")
}
for _, tc := range []struct {
name string
l *Loop
in Point
out Point
}{
{
"north hemisphere",
northHemi,
Point{r3.Vector{0, 0, 1}},
Point{r3.Vector{0, 0, -1}},
},
{
"south hemisphere",
southHemi,
Point{r3.Vector{0, 0, -1}},
Point{r3.Vector{0, 0, 1}},
},
{
"west hemisphere",
westHemi,
Point{r3.Vector{0, -1, 0}},
Point{r3.Vector{0, 1, 0}},
},
{
"east hemisphere",
eastHemi,
Point{r3.Vector{0, 1, 0}},
Point{r3.Vector{0, -1, 0}},
},
{
"candy cane",
candyCane,
PointFromLatLng(LatLngFromDegrees(5, 71)),
PointFromLatLng(LatLngFromDegrees(-8, 71)),
},
} {
l := tc.l
for i := 0; i < 4; i++ {
if !l.ContainsPoint(tc.in) {
t.Errorf("%s loop should contain %v at rotation %d", tc.name, tc.in, i)
}
if l.ContainsPoint(tc.out) {
t.Errorf("%s loop shouldn't contain %v at rotation %d", tc.name, tc.out, i)
}
l = rotate(l)
}
}
}
func TestLoopVertex(t *testing.T) {
tests := []struct {
loop *Loop
vertex int
want Point
}{
{EmptyLoop(), 0, Point{r3.Vector{0, 0, 1}}},
{EmptyLoop(), 1, Point{r3.Vector{0, 0, 1}}},
{FullLoop(), 0, Point{r3.Vector{0, 0, -1}}},
{FullLoop(), 1, Point{r3.Vector{0, 0, -1}}},
{arctic80, 0, parsePoint("80:-150")},
{arctic80, 1, parsePoint("80:-30")},
{arctic80, 2, parsePoint("80:90")},
{arctic80, 3, parsePoint("80:-150")},
}
for _, test := range tests {
if got := test.loop.Vertex(test.vertex); !pointsApproxEquals(got, test.want, epsilon) {
t.Errorf("%v.Vertex(%d) = %v, want %v", test.loop, test.vertex, got, test.want)
}
}
// Check that wrapping is correct.
if !pointsApproxEquals(arctic80.Vertex(2), arctic80.Vertex(5), epsilon) {
t.Errorf("Vertex should wrap values. %v.Vertex(2) = %v != %v.Vertex(5) = %v",
arctic80, arctic80.Vertex(2), arctic80, arctic80.Vertex(5))
}
loopAroundThrice := 2 + 3*len(arctic80.vertices)
if !pointsApproxEquals(arctic80.Vertex(2), arctic80.Vertex(loopAroundThrice), epsilon) {
t.Errorf("Vertex should wrap values. %v.Vertex(2) = %v != %v.Vertex(%d) = %v",
arctic80, arctic80.Vertex(2), arctic80, loopAroundThrice, arctic80.Vertex(loopAroundThrice))
}
}
func TestLoopNumEdges(t *testing.T) {
tests := []struct {
loop *Loop
want int
}{
{EmptyLoop(), 0},
{FullLoop(), 0},
{farHemi, 4},
{candyCane, 6},
{smallNECW, 3},
{arctic80, 3},
{antarctic80, 3},
{lineTriangle, 3},
{skinnyChevron, 4},
}
for _, test := range tests {
if got := test.loop.NumEdges(); got != test.want {
t.Errorf("%v.NumEdges() = %v, want %v", test.loop, got, test.want)
}
}
}
func TestLoopEdge(t *testing.T) {
tests := []struct {
loop *Loop
edge int
wantA Point
wantB Point
}{
{
loop: farHemi,
edge: 2,
wantA: Point{r3.Vector{0, 0, -1}},
wantB: Point{r3.Vector{0, -1, 0}},
},
{
loop: candyCane,
edge: 0,
wantA: parsePoint("-20:150"),
wantB: parsePoint("-20:-70"),
},
{
loop: candyCane,
edge: 1,
wantA: parsePoint("-20:-70"),
wantB: parsePoint("0:70"),
},
{
loop: candyCane,
edge: 2,
wantA: parsePoint("0:70"),
wantB: parsePoint("10:-150"),
},
{
loop: candyCane,
edge: 3,
wantA: parsePoint("10:-150"),
wantB: parsePoint("10:70"),
},
{
loop: candyCane,
edge: 4,
wantA: parsePoint("10:70"),
wantB: parsePoint("-10:-70"),
},
{
loop: candyCane,
edge: 5,
wantA: parsePoint("-10:-70"),
wantB: parsePoint("-20:150"),
},
{
loop: skinnyChevron,
edge: 2,
wantA: parsePoint("0:1e-320"),
wantB: parsePoint("1e-320:80"),
},
{
loop: skinnyChevron,
edge: 3,
wantA: parsePoint("1e-320:80"),
wantB: parsePoint("0:0"),
},
}
for _, test := range tests {
if a, b := test.loop.Edge(test.edge); !(pointsApproxEquals(a, test.wantA, epsilon) && pointsApproxEquals(b, test.wantB, epsilon)) {
t.Errorf("%v.Edge(%d) = (%v, %v), want (%v, %v)", test.loop, test.edge, a, b, test.wantA, test.wantB)
}
}
}
func rotate(l *Loop) *Loop {
vertices := make([]Point, 0, len(l.vertices))
for i := 1; i < len(l.vertices); i++ {
vertices = append(vertices, l.vertices[i])
}
vertices = append(vertices, l.vertices[0])
return LoopFromPoints(vertices)
}
func TestLoopFromCell(t *testing.T) {
cell := CellFromCellID(CellIDFromLatLng(LatLng{40.565459 * s1.Degree, -74.645276 * s1.Degree}))
loopFromCell := LoopFromCell(cell)
// Demonstrates the reason for this test; the cell bounds are more
// conservative than the resulting loop bounds.
if loopFromCell.RectBound().Contains(cell.RectBound()) {
t.Errorf("loopFromCell's RectBound countains the original cells RectBound, but should not")
}
}
func TestLoopRegularLoop(t *testing.T) {
loop := RegularLoop(PointFromLatLng(LatLngFromDegrees(80, 135)), 20*s1.Degree, 4)
if len(loop.vertices) != 4 {
t.Errorf("RegularLoop with 4 vertices should have 4 vertices, got %d", len(loop.vertices))
}
// The actual Points values are already tested in the s2point_test method TestRegularPoints.
}
|