File: point_test.go

package info (click to toggle)
golang-github-golang-geo 0.0~git20170112.0.f819552-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 832 kB
  • sloc: makefile: 2
file content (384 lines) | stat: -rw-r--r-- 12,753 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*
Copyright 2014 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package s2

import (
	"math"
	"testing"

	"github.com/golang/geo/r3"
	"github.com/golang/geo/s1"
)

func TestOriginPoint(t *testing.T) {
	if math.Abs(OriginPoint().Norm()-1) > 1e-15 {
		t.Errorf("Origin point norm = %v, want 1", OriginPoint().Norm())
	}

	// The point chosen below is about 66km from the north pole towards the East
	// Siberian Sea. The purpose of the stToUV(2/3) calculation is to keep the
	// origin as far away as possible from the longitudinal edges of large
	// Cells. (The line of longitude through the chosen point is always 1/3
	// or 2/3 of the way across any Cell with longitudinal edges that it
	// passes through.)
	p := Point{r3.Vector{-0.01, 0.01 * stToUV(2.0/3), 1}}
	if !p.ApproxEqual(OriginPoint()) {
		t.Errorf("Origin point should fall in the Siberian Sea, but does not.")
	}

	// Check that the origin is not too close to either pole.
	// The Earth's mean radius in kilometers (according to NASA).
	const earthRadiusKm = 6371.01
	if dist := math.Acos(OriginPoint().Z) * earthRadiusKm; dist <= 50 {
		t.Errorf("Origin point is to close to the North Pole. Got %v, want >= 50km", dist)
	}
}

func TestPointCross(t *testing.T) {
	tests := []struct {
		p1x, p1y, p1z, p2x, p2y, p2z, norm float64
	}{
		{1, 0, 0, 1, 0, 0, 1},
		{1, 0, 0, 0, 1, 0, 2},
		{0, 1, 0, 1, 0, 0, 2},
		{1, 2, 3, -4, 5, -6, 2 * math.Sqrt(934)},
	}
	for _, test := range tests {
		p1 := Point{r3.Vector{test.p1x, test.p1y, test.p1z}}
		p2 := Point{r3.Vector{test.p2x, test.p2y, test.p2z}}
		result := p1.PointCross(p2)
		if !float64Eq(result.Norm(), test.norm) {
			t.Errorf("|%v ⨯ %v| = %v, want %v", p1, p2, result.Norm(), test.norm)
		}
		if x := result.Dot(p1.Vector); !float64Eq(x, 0) {
			t.Errorf("|(%v ⨯ %v) · %v| = %v, want 0", p1, p2, p1, x)
		}
		if x := result.Dot(p2.Vector); !float64Eq(x, 0) {
			t.Errorf("|(%v ⨯ %v) · %v| = %v, want 0", p1, p2, p2, x)
		}
	}
}

func TestPointDistance(t *testing.T) {
	tests := []struct {
		x1, y1, z1 float64
		x2, y2, z2 float64
		want       float64 // radians
	}{
		{1, 0, 0, 1, 0, 0, 0},
		{1, 0, 0, 0, 1, 0, math.Pi / 2},
		{1, 0, 0, 0, 1, 1, math.Pi / 2},
		{1, 0, 0, -1, 0, 0, math.Pi},
		{1, 2, 3, 2, 3, -1, 1.2055891055045298},
	}
	for _, test := range tests {
		p1 := Point{r3.Vector{test.x1, test.y1, test.z1}}
		p2 := Point{r3.Vector{test.x2, test.y2, test.z2}}
		if a := p1.Distance(p2).Radians(); !float64Eq(a, test.want) {
			t.Errorf("%v.Distance(%v) = %v, want %v", p1, p2, a, test.want)
		}
		if a := p2.Distance(p1).Radians(); !float64Eq(a, test.want) {
			t.Errorf("%v.Distance(%v) = %v, want %v", p2, p1, a, test.want)
		}
	}
}

func TestChordAngleBetweenPoints(t *testing.T) {
	for iter := 0; iter < 10; iter++ {
		m := randomFrame()
		x := m.col(0)
		y := m.col(1)
		z := m.col(2)

		if got := ChordAngleBetweenPoints(z, z).Angle(); got != 0 {
			t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want 0", z, z, got)
		}
		if got, want := ChordAngleBetweenPoints(Point{z.Mul(-1)}, z).Angle().Radians(), math.Pi; !float64Near(got, want, 1e-7) {
			t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", z.Mul(-1), z, got, want)
		}
		if got, want := ChordAngleBetweenPoints(x, z).Angle().Radians(), math.Pi/2; !float64Eq(got, want) {
			t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", x, z, got, want)
		}
		w := Point{y.Add(z.Vector).Normalize()}
		if got, want := ChordAngleBetweenPoints(w, z).Angle().Radians(), math.Pi/4; !float64Eq(got, want) {
			t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", w, z, got, want)
		}
	}
}

func TestPointApproxEqual(t *testing.T) {
	tests := []struct {
		x1, y1, z1 float64
		x2, y2, z2 float64
		want       bool
	}{
		{1, 0, 0, 1, 0, 0, true},
		{1, 0, 0, 0, 1, 0, false},
		{1, 0, 0, 0, 1, 1, false},
		{1, 0, 0, -1, 0, 0, false},
		{1, 2, 3, 2, 3, -1, false},
		{1, 0, 0, 1 * (1 + epsilon), 0, 0, true},
		{1, 0, 0, 1 * (1 - epsilon), 0, 0, true},
		{1, 0, 0, 1 + epsilon, 0, 0, true},
		{1, 0, 0, 1 - epsilon, 0, 0, true},
		{1, 0, 0, 1, epsilon, 0, true},
		{1, 0, 0, 1, epsilon, epsilon, false},
		{1, epsilon, 0, 1, -epsilon, epsilon, false},
	}
	for _, test := range tests {
		p1 := Point{r3.Vector{test.x1, test.y1, test.z1}}
		p2 := Point{r3.Vector{test.x2, test.y2, test.z2}}
		if got := p1.ApproxEqual(p2); got != test.want {
			t.Errorf("%v.ApproxEqual(%v), got %v want %v", p1, p2, got, test.want)
		}
	}
}

var (
	pz   = Point{r3.Vector{0, 0, 1}}
	p000 = Point{r3.Vector{1, 0, 0}}
	p045 = Point{r3.Vector{1, 1, 0}}
	p090 = Point{r3.Vector{0, 1, 0}}
	p180 = Point{r3.Vector{-1, 0, 0}}
	// Degenerate triangles.
	pr = Point{r3.Vector{0.257, -0.5723, 0.112}}
	pq = Point{r3.Vector{-0.747, 0.401, 0.2235}}

	// For testing the Girard area fall through case.
	g1 = Point{r3.Vector{1, 1, 1}}
	g2 = Point{g1.Add(pr.Mul(1e-15)).Normalize()}
	g3 = Point{g1.Add(pq.Mul(1e-15)).Normalize()}
)

func TestPointArea(t *testing.T) {
	epsilon := 1e-10
	tests := []struct {
		a, b, c  Point
		want     float64
		nearness float64
	}{
		{p000, p090, pz, math.Pi / 2.0, 0},
		// This test case should give 0 as the epsilon, but either Go or C++'s value for Pi,
		// or the accuracy of the multiplications along the way, cause a difference ~15 decimal
		// places into the result, so it is not quite a difference of 0.
		{p045, pz, p180, 3.0 * math.Pi / 4.0, 1e-14},
		// Make sure that Area has good *relative* accuracy even for very small areas.
		{Point{r3.Vector{epsilon, 0, 1}}, Point{r3.Vector{0, epsilon, 1}}, pz, 0.5 * epsilon * epsilon, 1e-14},
		// Make sure that it can handle degenerate triangles.
		{pr, pr, pr, 0.0, 0},
		{pr, pq, pr, 0.0, 1e-15},
		{p000, p045, p090, 0.0, 0},
		// Try a very long and skinny triangle.
		{p000, Point{r3.Vector{1, 1, epsilon}}, p090, 5.8578643762690495119753e-11, 1e-9},
		// TODO(roberts):
		// C++ includes a 10,000 loop of perterbations to test out the Girard area
		// computation is less than some noise threshold.
		// Do we need that many? Will one or two suffice?
		{g1, g2, g3, 0.0, 1e-15},
	}
	for _, test := range tests {
		if got := PointArea(test.a, test.b, test.c); !float64Near(got, test.want, test.nearness) {
			t.Errorf("PointArea(%v, %v, %v), got %v want %v", test.a, test.b, test.c, got, test.want)
		}
	}
}

func TestPointAreaQuarterHemisphere(t *testing.T) {
	tests := []struct {
		a, b, c, d, e Point
		want          float64
	}{
		// Triangles with near-180 degree edges that sum to a quarter-sphere.
		{Point{r3.Vector{1, 0.1 * epsilon, epsilon}}, p000, p045, p180, pz, math.Pi},
		// Four other triangles that sum to a quarter-sphere.
		{Point{r3.Vector{1, 1, epsilon}}, p000, p045, p180, pz, math.Pi},
		// TODO(roberts):
		// C++ Includes a loop of 100 perturbations on a hemisphere for more tests.
	}
	for _, test := range tests {
		area := PointArea(test.a, test.b, test.c) +
			PointArea(test.a, test.c, test.d) +
			PointArea(test.a, test.d, test.e) +
			PointArea(test.a, test.e, test.b)

		if !float64Eq(area, test.want) {
			t.Errorf("Adding up 4 quarter hemispheres with PointArea(), got %v want %v", area, test.want)
		}
	}
}

func TestPointPlanarCentroid(t *testing.T) {
	tests := []struct {
		name             string
		p0, p1, p2, want Point
	}{
		{
			name: "xyz axis",
			p0:   Point{r3.Vector{0, 0, 1}},
			p1:   Point{r3.Vector{0, 1, 0}},
			p2:   Point{r3.Vector{1, 0, 0}},
			want: Point{r3.Vector{1. / 3, 1. / 3, 1. / 3}},
		},
		{
			name: "Same point",
			p0:   Point{r3.Vector{1, 0, 0}},
			p1:   Point{r3.Vector{1, 0, 0}},
			p2:   Point{r3.Vector{1, 0, 0}},
			want: Point{r3.Vector{1, 0, 0}},
		},
	}

	for _, test := range tests {
		got := PlanarCentroid(test.p0, test.p1, test.p2)
		if !got.ApproxEqual(test.want) {
			t.Errorf("%s: PlanarCentroid(%v, %v, %v) = %v, want %v", test.name, test.p0, test.p1, test.p2, got, test.want)
		}
	}
}

func TestPointTrueCentroid(t *testing.T) {
	// Test TrueCentroid with very small triangles. This test assumes that
	// the triangle is small enough so that it is nearly planar.
	// The centroid of a planar triangle is at the intersection of its
	// medians, which is two-thirds of the way along each median.
	for i := 0; i < 100; i++ {
		f := randomFrame()
		p := f.col(0)
		x := f.col(1)
		y := f.col(2)
		d := 1e-4 * math.Pow(1e-4, randomFloat64())

		// Make a triangle with two equal sides.
		p0 := Point{p.Sub(x.Mul(d)).Normalize()}
		p1 := Point{p.Add(x.Mul(d)).Normalize()}
		p2 := Point{p.Add(y.Mul(d * 3)).Normalize()}
		want := Point{p.Add(y.Mul(d)).Normalize()}

		got := TrueCentroid(p0, p1, p2).Normalize()
		if got.Distance(want.Vector) >= 2e-8 {
			t.Errorf("TrueCentroid(%v, %v, %v).Normalize() = %v, want %v", p0, p1, p2, got, want)
		}

		// Make a triangle with a right angle.
		p0 = p
		p1 = Point{p.Add(x.Mul(d * 3)).Normalize()}
		p2 = Point{p.Add(y.Mul(d * 6)).Normalize()}
		want = Point{p.Add(x.Add(y.Mul(2)).Mul(d)).Normalize()}

		got = TrueCentroid(p0, p1, p2).Normalize()
		if got.Distance(want.Vector) >= 2e-8 {
			t.Errorf("TrueCentroid(%v, %v, %v).Normalize() = %v, want %v", p0, p1, p2, got, want)
		}
	}
}

func TestPointRegularPoints(t *testing.T) {
	// Conversion to/from degrees has a little more variability than the default epsilon.
	const epsilon = 1e-13
	center := PointFromLatLng(LatLngFromDegrees(80, 135))
	radius := s1.Degree * 20
	pts := regularPoints(center, radius, 4)

	if len(pts) != 4 {
		t.Errorf("regularPoints with 4 vertices should have 4 vertices, got %d", len(pts))
	}

	lls := []LatLng{
		LatLngFromPoint(pts[0]),
		LatLngFromPoint(pts[1]),
		LatLngFromPoint(pts[2]),
		LatLngFromPoint(pts[3]),
	}
	cll := LatLngFromPoint(center)

	// Make sure that the radius is correct.
	wantDist := 20.0
	for i, ll := range lls {
		if got := cll.Distance(ll).Degrees(); !float64Near(got, wantDist, epsilon) {
			t.Errorf("Vertex %d distance from center = %v, want %v", i, got, wantDist)
		}
	}

	// Make sure the angle between each point is correct.
	wantAngle := math.Pi / 2
	for i := 0; i < len(pts); i++ {
		// Mod the index by 4 to wrap the values at each end.
		v0, v1, v2 := pts[(4+i+1)%4], pts[(4+i)%4], pts[(4+i-1)%4]
		if got := float64(v0.Sub(v1.Vector).Angle(v2.Sub(v1.Vector))); !float64Eq(got, wantAngle) {
			t.Errorf("(%v-%v).Angle(%v-%v) = %v, want %v", v0, v1, v1, v2, got, wantAngle)
		}
	}

	// Make sure that all edges of the polygon have the same length.
	wantLength := 27.990890717782829
	for i := 0; i < len(lls); i++ {
		ll1, ll2 := lls[i], lls[(i+1)%4]
		if got := ll1.Distance(ll2).Degrees(); !float64Near(got, wantLength, epsilon) {
			t.Errorf("%v.Distance(%v) = %v, want %v", ll1, ll2, got, wantLength)
		}
	}

	// Spot check an actual coordinate now that we know the points are spaced
	// evenly apart at the same angles and radii.
	if got, want := lls[0].Lat.Degrees(), 62.162880741097204; !float64Near(got, want, epsilon) {
		t.Errorf("%v.Lat = %v, want %v", lls[0], got, want)
	}
	if got, want := lls[0].Lng.Degrees(), 103.11051028343407; !float64Near(got, want, epsilon) {
		t.Errorf("%v.Lng = %v, want %v", lls[0], got, want)
	}
}

func TestPointRegion(t *testing.T) {
	p := Point{r3.Vector{1, 0, 0}}
	r := Point{r3.Vector{1, 0, 0}}
	if !r.Contains(p) {
		t.Errorf("%v.Contains(%v) = false, want true", r, p)
	}
	if !r.Contains(r) {
		t.Errorf("%v.Contains(%v) = false, want true", r, r)
	}
	if s := (Point{r3.Vector{1, 0, 1}}); r.Contains(s) {
		t.Errorf("%v.Contains(%v) = true, want false", r, s)
	}
	if got, want := r.CapBound(), CapFromPoint(p); !got.ApproxEqual(want) {
		t.Errorf("%v.CapBound() = %v, want %v", r, got, want)
	}
	if got, want := r.RectBound(), RectFromLatLng(LatLngFromPoint(p)); !rectsApproxEqual(got, want, epsilon, epsilon) {
		t.Errorf("%v.RectBound() = %v, want %v", r, got, want)
	}

	// The leaf cell containing a point is still much larger than the point.
	cell := CellFromPoint(p)
	if r.ContainsCell(cell) {
		t.Errorf("%v.ContainsCell(%v) = true, want false", r, cell)
	}
	if !r.IntersectsCell(cell) {
		t.Errorf("%v.IntersectsCell(%v) = false, want true", r, cell)
	}
}

func BenchmarkPointArea(b *testing.B) {
	for i := 0; i < b.N; i++ {
		PointArea(p000, p090, pz)
	}
}

func BenchmarkPointAreaGirardCase(b *testing.B) {
	for i := 0; i < b.N; i++ {
		PointArea(g1, g2, g3)
	}
}