1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/*
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s2
import (
"math"
"testing"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
func TestOriginPoint(t *testing.T) {
if math.Abs(OriginPoint().Norm()-1) > 1e-15 {
t.Errorf("Origin point norm = %v, want 1", OriginPoint().Norm())
}
// The point chosen below is about 66km from the north pole towards the East
// Siberian Sea. The purpose of the stToUV(2/3) calculation is to keep the
// origin as far away as possible from the longitudinal edges of large
// Cells. (The line of longitude through the chosen point is always 1/3
// or 2/3 of the way across any Cell with longitudinal edges that it
// passes through.)
p := Point{r3.Vector{-0.01, 0.01 * stToUV(2.0/3), 1}}
if !p.ApproxEqual(OriginPoint()) {
t.Errorf("Origin point should fall in the Siberian Sea, but does not.")
}
// Check that the origin is not too close to either pole.
// The Earth's mean radius in kilometers (according to NASA).
const earthRadiusKm = 6371.01
if dist := math.Acos(OriginPoint().Z) * earthRadiusKm; dist <= 50 {
t.Errorf("Origin point is to close to the North Pole. Got %v, want >= 50km", dist)
}
}
func TestPointCross(t *testing.T) {
tests := []struct {
p1x, p1y, p1z, p2x, p2y, p2z, norm float64
}{
{1, 0, 0, 1, 0, 0, 1},
{1, 0, 0, 0, 1, 0, 2},
{0, 1, 0, 1, 0, 0, 2},
{1, 2, 3, -4, 5, -6, 2 * math.Sqrt(934)},
}
for _, test := range tests {
p1 := Point{r3.Vector{test.p1x, test.p1y, test.p1z}}
p2 := Point{r3.Vector{test.p2x, test.p2y, test.p2z}}
result := p1.PointCross(p2)
if !float64Eq(result.Norm(), test.norm) {
t.Errorf("|%v ⨯ %v| = %v, want %v", p1, p2, result.Norm(), test.norm)
}
if x := result.Dot(p1.Vector); !float64Eq(x, 0) {
t.Errorf("|(%v ⨯ %v) · %v| = %v, want 0", p1, p2, p1, x)
}
if x := result.Dot(p2.Vector); !float64Eq(x, 0) {
t.Errorf("|(%v ⨯ %v) · %v| = %v, want 0", p1, p2, p2, x)
}
}
}
func TestPointDistance(t *testing.T) {
tests := []struct {
x1, y1, z1 float64
x2, y2, z2 float64
want float64 // radians
}{
{1, 0, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 1, 0, math.Pi / 2},
{1, 0, 0, 0, 1, 1, math.Pi / 2},
{1, 0, 0, -1, 0, 0, math.Pi},
{1, 2, 3, 2, 3, -1, 1.2055891055045298},
}
for _, test := range tests {
p1 := Point{r3.Vector{test.x1, test.y1, test.z1}}
p2 := Point{r3.Vector{test.x2, test.y2, test.z2}}
if a := p1.Distance(p2).Radians(); !float64Eq(a, test.want) {
t.Errorf("%v.Distance(%v) = %v, want %v", p1, p2, a, test.want)
}
if a := p2.Distance(p1).Radians(); !float64Eq(a, test.want) {
t.Errorf("%v.Distance(%v) = %v, want %v", p2, p1, a, test.want)
}
}
}
func TestChordAngleBetweenPoints(t *testing.T) {
for iter := 0; iter < 10; iter++ {
m := randomFrame()
x := m.col(0)
y := m.col(1)
z := m.col(2)
if got := ChordAngleBetweenPoints(z, z).Angle(); got != 0 {
t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want 0", z, z, got)
}
if got, want := ChordAngleBetweenPoints(Point{z.Mul(-1)}, z).Angle().Radians(), math.Pi; !float64Near(got, want, 1e-7) {
t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", z.Mul(-1), z, got, want)
}
if got, want := ChordAngleBetweenPoints(x, z).Angle().Radians(), math.Pi/2; !float64Eq(got, want) {
t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", x, z, got, want)
}
w := Point{y.Add(z.Vector).Normalize()}
if got, want := ChordAngleBetweenPoints(w, z).Angle().Radians(), math.Pi/4; !float64Eq(got, want) {
t.Errorf("ChordAngleBetweenPoints(%v, %v) = %v, want %v", w, z, got, want)
}
}
}
func TestPointApproxEqual(t *testing.T) {
tests := []struct {
x1, y1, z1 float64
x2, y2, z2 float64
want bool
}{
{1, 0, 0, 1, 0, 0, true},
{1, 0, 0, 0, 1, 0, false},
{1, 0, 0, 0, 1, 1, false},
{1, 0, 0, -1, 0, 0, false},
{1, 2, 3, 2, 3, -1, false},
{1, 0, 0, 1 * (1 + epsilon), 0, 0, true},
{1, 0, 0, 1 * (1 - epsilon), 0, 0, true},
{1, 0, 0, 1 + epsilon, 0, 0, true},
{1, 0, 0, 1 - epsilon, 0, 0, true},
{1, 0, 0, 1, epsilon, 0, true},
{1, 0, 0, 1, epsilon, epsilon, false},
{1, epsilon, 0, 1, -epsilon, epsilon, false},
}
for _, test := range tests {
p1 := Point{r3.Vector{test.x1, test.y1, test.z1}}
p2 := Point{r3.Vector{test.x2, test.y2, test.z2}}
if got := p1.ApproxEqual(p2); got != test.want {
t.Errorf("%v.ApproxEqual(%v), got %v want %v", p1, p2, got, test.want)
}
}
}
var (
pz = Point{r3.Vector{0, 0, 1}}
p000 = Point{r3.Vector{1, 0, 0}}
p045 = Point{r3.Vector{1, 1, 0}}
p090 = Point{r3.Vector{0, 1, 0}}
p180 = Point{r3.Vector{-1, 0, 0}}
// Degenerate triangles.
pr = Point{r3.Vector{0.257, -0.5723, 0.112}}
pq = Point{r3.Vector{-0.747, 0.401, 0.2235}}
// For testing the Girard area fall through case.
g1 = Point{r3.Vector{1, 1, 1}}
g2 = Point{g1.Add(pr.Mul(1e-15)).Normalize()}
g3 = Point{g1.Add(pq.Mul(1e-15)).Normalize()}
)
func TestPointArea(t *testing.T) {
epsilon := 1e-10
tests := []struct {
a, b, c Point
want float64
nearness float64
}{
{p000, p090, pz, math.Pi / 2.0, 0},
// This test case should give 0 as the epsilon, but either Go or C++'s value for Pi,
// or the accuracy of the multiplications along the way, cause a difference ~15 decimal
// places into the result, so it is not quite a difference of 0.
{p045, pz, p180, 3.0 * math.Pi / 4.0, 1e-14},
// Make sure that Area has good *relative* accuracy even for very small areas.
{Point{r3.Vector{epsilon, 0, 1}}, Point{r3.Vector{0, epsilon, 1}}, pz, 0.5 * epsilon * epsilon, 1e-14},
// Make sure that it can handle degenerate triangles.
{pr, pr, pr, 0.0, 0},
{pr, pq, pr, 0.0, 1e-15},
{p000, p045, p090, 0.0, 0},
// Try a very long and skinny triangle.
{p000, Point{r3.Vector{1, 1, epsilon}}, p090, 5.8578643762690495119753e-11, 1e-9},
// TODO(roberts):
// C++ includes a 10,000 loop of perterbations to test out the Girard area
// computation is less than some noise threshold.
// Do we need that many? Will one or two suffice?
{g1, g2, g3, 0.0, 1e-15},
}
for _, test := range tests {
if got := PointArea(test.a, test.b, test.c); !float64Near(got, test.want, test.nearness) {
t.Errorf("PointArea(%v, %v, %v), got %v want %v", test.a, test.b, test.c, got, test.want)
}
}
}
func TestPointAreaQuarterHemisphere(t *testing.T) {
tests := []struct {
a, b, c, d, e Point
want float64
}{
// Triangles with near-180 degree edges that sum to a quarter-sphere.
{Point{r3.Vector{1, 0.1 * epsilon, epsilon}}, p000, p045, p180, pz, math.Pi},
// Four other triangles that sum to a quarter-sphere.
{Point{r3.Vector{1, 1, epsilon}}, p000, p045, p180, pz, math.Pi},
// TODO(roberts):
// C++ Includes a loop of 100 perturbations on a hemisphere for more tests.
}
for _, test := range tests {
area := PointArea(test.a, test.b, test.c) +
PointArea(test.a, test.c, test.d) +
PointArea(test.a, test.d, test.e) +
PointArea(test.a, test.e, test.b)
if !float64Eq(area, test.want) {
t.Errorf("Adding up 4 quarter hemispheres with PointArea(), got %v want %v", area, test.want)
}
}
}
func TestPointPlanarCentroid(t *testing.T) {
tests := []struct {
name string
p0, p1, p2, want Point
}{
{
name: "xyz axis",
p0: Point{r3.Vector{0, 0, 1}},
p1: Point{r3.Vector{0, 1, 0}},
p2: Point{r3.Vector{1, 0, 0}},
want: Point{r3.Vector{1. / 3, 1. / 3, 1. / 3}},
},
{
name: "Same point",
p0: Point{r3.Vector{1, 0, 0}},
p1: Point{r3.Vector{1, 0, 0}},
p2: Point{r3.Vector{1, 0, 0}},
want: Point{r3.Vector{1, 0, 0}},
},
}
for _, test := range tests {
got := PlanarCentroid(test.p0, test.p1, test.p2)
if !got.ApproxEqual(test.want) {
t.Errorf("%s: PlanarCentroid(%v, %v, %v) = %v, want %v", test.name, test.p0, test.p1, test.p2, got, test.want)
}
}
}
func TestPointTrueCentroid(t *testing.T) {
// Test TrueCentroid with very small triangles. This test assumes that
// the triangle is small enough so that it is nearly planar.
// The centroid of a planar triangle is at the intersection of its
// medians, which is two-thirds of the way along each median.
for i := 0; i < 100; i++ {
f := randomFrame()
p := f.col(0)
x := f.col(1)
y := f.col(2)
d := 1e-4 * math.Pow(1e-4, randomFloat64())
// Make a triangle with two equal sides.
p0 := Point{p.Sub(x.Mul(d)).Normalize()}
p1 := Point{p.Add(x.Mul(d)).Normalize()}
p2 := Point{p.Add(y.Mul(d * 3)).Normalize()}
want := Point{p.Add(y.Mul(d)).Normalize()}
got := TrueCentroid(p0, p1, p2).Normalize()
if got.Distance(want.Vector) >= 2e-8 {
t.Errorf("TrueCentroid(%v, %v, %v).Normalize() = %v, want %v", p0, p1, p2, got, want)
}
// Make a triangle with a right angle.
p0 = p
p1 = Point{p.Add(x.Mul(d * 3)).Normalize()}
p2 = Point{p.Add(y.Mul(d * 6)).Normalize()}
want = Point{p.Add(x.Add(y.Mul(2)).Mul(d)).Normalize()}
got = TrueCentroid(p0, p1, p2).Normalize()
if got.Distance(want.Vector) >= 2e-8 {
t.Errorf("TrueCentroid(%v, %v, %v).Normalize() = %v, want %v", p0, p1, p2, got, want)
}
}
}
func TestPointRegularPoints(t *testing.T) {
// Conversion to/from degrees has a little more variability than the default epsilon.
const epsilon = 1e-13
center := PointFromLatLng(LatLngFromDegrees(80, 135))
radius := s1.Degree * 20
pts := regularPoints(center, radius, 4)
if len(pts) != 4 {
t.Errorf("regularPoints with 4 vertices should have 4 vertices, got %d", len(pts))
}
lls := []LatLng{
LatLngFromPoint(pts[0]),
LatLngFromPoint(pts[1]),
LatLngFromPoint(pts[2]),
LatLngFromPoint(pts[3]),
}
cll := LatLngFromPoint(center)
// Make sure that the radius is correct.
wantDist := 20.0
for i, ll := range lls {
if got := cll.Distance(ll).Degrees(); !float64Near(got, wantDist, epsilon) {
t.Errorf("Vertex %d distance from center = %v, want %v", i, got, wantDist)
}
}
// Make sure the angle between each point is correct.
wantAngle := math.Pi / 2
for i := 0; i < len(pts); i++ {
// Mod the index by 4 to wrap the values at each end.
v0, v1, v2 := pts[(4+i+1)%4], pts[(4+i)%4], pts[(4+i-1)%4]
if got := float64(v0.Sub(v1.Vector).Angle(v2.Sub(v1.Vector))); !float64Eq(got, wantAngle) {
t.Errorf("(%v-%v).Angle(%v-%v) = %v, want %v", v0, v1, v1, v2, got, wantAngle)
}
}
// Make sure that all edges of the polygon have the same length.
wantLength := 27.990890717782829
for i := 0; i < len(lls); i++ {
ll1, ll2 := lls[i], lls[(i+1)%4]
if got := ll1.Distance(ll2).Degrees(); !float64Near(got, wantLength, epsilon) {
t.Errorf("%v.Distance(%v) = %v, want %v", ll1, ll2, got, wantLength)
}
}
// Spot check an actual coordinate now that we know the points are spaced
// evenly apart at the same angles and radii.
if got, want := lls[0].Lat.Degrees(), 62.162880741097204; !float64Near(got, want, epsilon) {
t.Errorf("%v.Lat = %v, want %v", lls[0], got, want)
}
if got, want := lls[0].Lng.Degrees(), 103.11051028343407; !float64Near(got, want, epsilon) {
t.Errorf("%v.Lng = %v, want %v", lls[0], got, want)
}
}
func TestPointRegion(t *testing.T) {
p := Point{r3.Vector{1, 0, 0}}
r := Point{r3.Vector{1, 0, 0}}
if !r.Contains(p) {
t.Errorf("%v.Contains(%v) = false, want true", r, p)
}
if !r.Contains(r) {
t.Errorf("%v.Contains(%v) = false, want true", r, r)
}
if s := (Point{r3.Vector{1, 0, 1}}); r.Contains(s) {
t.Errorf("%v.Contains(%v) = true, want false", r, s)
}
if got, want := r.CapBound(), CapFromPoint(p); !got.ApproxEqual(want) {
t.Errorf("%v.CapBound() = %v, want %v", r, got, want)
}
if got, want := r.RectBound(), RectFromLatLng(LatLngFromPoint(p)); !rectsApproxEqual(got, want, epsilon, epsilon) {
t.Errorf("%v.RectBound() = %v, want %v", r, got, want)
}
// The leaf cell containing a point is still much larger than the point.
cell := CellFromPoint(p)
if r.ContainsCell(cell) {
t.Errorf("%v.ContainsCell(%v) = true, want false", r, cell)
}
if !r.IntersectsCell(cell) {
t.Errorf("%v.IntersectsCell(%v) = false, want true", r, cell)
}
}
func BenchmarkPointArea(b *testing.B) {
for i := 0; i < b.N; i++ {
PointArea(p000, p090, pz)
}
}
func BenchmarkPointAreaGirardCase(b *testing.B) {
for i := 0; i < b.N; i++ {
PointArea(g1, g2, g3)
}
}
|