File: polyline_test.go

package info (click to toggle)
golang-github-golang-geo 0.0~git20170112.0.f819552-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 832 kB
  • sloc: makefile: 2
file content (144 lines) | stat: -rw-r--r-- 4,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
Copyright 2016 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package s2

import (
	"math"
	"testing"

	"github.com/golang/geo/r3"
)

func TestPolylineBasics(t *testing.T) {
	empty := Polyline{}
	if empty.RectBound() != EmptyRect() {
		t.Errorf("empty.RectBound() = %v, want %v", empty.RectBound(), EmptyRect())
	}
	if len(empty) != 0 {
		t.Errorf("empty Polyline should have no vertices")
	}
	empty.Reverse()
	if len(empty) != 0 {
		t.Errorf("reveresed empty Polyline should have no vertices")
	}

	latlngs := []LatLng{
		LatLngFromDegrees(0, 0),
		LatLngFromDegrees(0, 90),
		LatLngFromDegrees(0, 180),
	}

	semiEquator := PolylineFromLatLngs(latlngs)
	//if got, want := semiEquator.Interpolate(0.5), Point{r3.Vector{0, 1, 0}}; !got.ApproxEqual(want) {
	//	t.Errorf("semiEquator.Interpolate(0.5) = %v, want %v", got, want)
	//}
	semiEquator.Reverse()
	if got, want := semiEquator[2], (Point{r3.Vector{1, 0, 0}}); !got.ApproxEqual(want) {
		t.Errorf("semiEquator[2] = %v, want %v", got, want)
	}
}

func TestPolylineShape(t *testing.T) {
	var shape Shape = makePolyline("0:0, 1:0, 1:1, 2:1")
	if got, want := shape.NumEdges(), 3; got != want {
		t.Errorf("%v.NumEdges() = %v, want %d", shape, got, want)
	}

	if got, want := shape.numChains(), 1; got != want {
		t.Errorf("%v.numChains() = %d, want %d", shape, got, want)
	}
	if got, want := shape.chainStart(0), 0; got != want {
		t.Errorf("%v.chainStart(0) = %d, want %d", shape, got, want)
	}
	if got, want := shape.chainStart(1), 3; got != want {
		t.Errorf("%v.chainStart(1) = %d, want %d", shape, got, want)
	}

	v2, v3 := shape.Edge(2)
	if want := PointFromLatLng(LatLngFromDegrees(1, 1)); !v2.ApproxEqual(want) {
		t.Errorf("%v.Edge(%d) point A = %v  want %v", shape, 2, v2, want)
	}
	if want := PointFromLatLng(LatLngFromDegrees(2, 1)); !v3.ApproxEqual(want) {
		t.Errorf("%v.Edge(%d) point B = %v  want %v", shape, 2, v3, want)
	}

	if shape.HasInterior() {
		t.Errorf("polylines should not have an interior")
	}
	if shape.ContainsOrigin() {
		t.Errorf("polylines should not contain the origin")
	}

	if shape.dimension() != polylineGeometry {
		t.Errorf("polylines should have PolylineGeometry")
	}

	empty := &Polyline{}
	if got, want := empty.NumEdges(), 0; got != want {
		t.Errorf("%v.NumEdges() = %d, want %d", empty, got, want)
	}
	if got, want := empty.numChains(), 0; got != want {
		t.Errorf("%v.numChains() = %d, want %d", empty, got, want)
	}
}

func TestPolylineLengthAndCentroid(t *testing.T) {
	// Construct random great circles and divide them randomly into segments.
	// Then make sure that the length and centroid are correct.  Note that
	// because of the way the centroid is computed, it does not matter how
	// we split the great circle into segments.

	for i := 0; i < 100; i++ {
		// Choose a coordinate frame for the great circle.
		f := randomFrame()

		var line Polyline
		for theta := 0.0; theta < 2*math.Pi; theta += math.Pow(randomFloat64(), 10) {
			p := Point{f.row(0).Mul(math.Cos(theta)).Add(f.row(1).Mul(math.Sin(theta)))}
			if len(line) == 0 || !p.ApproxEqual(line[len(line)-1]) {
				line = append(line, p)
			}
		}

		// Close the circle.
		line = append(line, line[0])

		length := line.Length()
		if got, want := math.Abs(length.Radians()-2*math.Pi), 2e-14; got > want {
			t.Errorf("%v.Length() = %v, want < %v", line, got, want)
		}

		centroid := line.Centroid()
		if got, want := centroid.Norm(), 2e-14; got > want {
			t.Errorf("%v.Norm() = %v, want < %v", centroid, got, want)
		}
	}
}

func TestPolylineIntersectsCell(t *testing.T) {
	pline := Polyline{
		Point{r3.Vector{1, -1.1, 0.8}.Normalize()},
		Point{r3.Vector{1, -0.8, 1.1}.Normalize()},
	}

	for face := 0; face < 6; face++ {
		cell := CellFromCellID(CellIDFromFace(face))
		if got, want := pline.IntersectsCell(cell), face&1 == 0; got != want {
			t.Errorf("%v.IntersectsCell(%v) = %v, want %v", pline, cell, got, want)
		}
	}
}