1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
Copyright 2016 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s2
import (
"math"
"testing"
"github.com/golang/geo/r3"
)
func TestPredicatesSign(t *testing.T) {
tests := []struct {
p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z float64
want bool
}{
{1, 0, 0, 0, 1, 0, 0, 0, 1, true},
{0, 1, 0, 0, 0, 1, 1, 0, 0, true},
{0, 0, 1, 1, 0, 0, 0, 1, 0, true},
{1, 1, 0, 0, 1, 1, 1, 0, 1, true},
{-3, -1, 4, 2, -1, -3, 1, -2, 0, true},
// All degenerate cases of Sign(). Let M_1, M_2, ... be the sequence of
// submatrices whose determinant sign is tested by that function. Then the
// i-th test below is a 3x3 matrix M (with rows A, B, C) such that:
//
// det(M) = 0
// det(M_j) = 0 for j < i
// det(M_i) != 0
// A < B < C in lexicographic order.
// det(M_1) = b0*c1 - b1*c0
{-3, -1, 0, -2, 1, 0, 1, -2, 0, false},
// det(M_2) = b2*c0 - b0*c2
{-6, 3, 3, -4, 2, -1, -2, 1, 4, false},
// det(M_3) = b1*c2 - b2*c1
{0, -1, -1, 0, 1, -2, 0, 2, 1, false},
// From this point onward, B or C must be zero, or B is proportional to C.
// det(M_4) = c0*a1 - c1*a0
{-1, 2, 7, 2, 1, -4, 4, 2, -8, false},
// det(M_5) = c0
{-4, -2, 7, 2, 1, -4, 4, 2, -8, false},
// det(M_6) = -c1
{0, -5, 7, 0, -4, 8, 0, -2, 4, false},
// det(M_7) = c2*a0 - c0*a2
{-5, -2, 7, 0, 0, -2, 0, 0, -1, false},
// det(M_8) = c2
{0, -2, 7, 0, 0, 1, 0, 0, 2, false},
}
for _, test := range tests {
p1 := Point{r3.Vector{test.p1x, test.p1y, test.p1z}}
p2 := Point{r3.Vector{test.p2x, test.p2y, test.p2z}}
p3 := Point{r3.Vector{test.p3x, test.p3y, test.p3z}}
result := Sign(p1, p2, p3)
if result != test.want {
t.Errorf("Sign(%v, %v, %v) = %v, want %v", p1, p2, p3, result, test.want)
}
if test.want {
// For these cases we can test the reversibility condition
result = Sign(p3, p2, p1)
if result == test.want {
t.Errorf("Sign(%v, %v, %v) = %v, want %v", p3, p2, p1, result, !test.want)
}
}
}
}
// Points used in the various RobustSign tests.
var (
// The following points happen to be *exactly collinear* along a line that it
// approximate tangent to the surface of the unit sphere. In fact, C is the
// exact midpoint of the line segment AB. All of these points are close
// enough to unit length to satisfy r3.Vector.IsUnit().
poA = Point{r3.Vector{0.72571927877036835, 0.46058825605889098, 0.51106749730504852}}
poB = Point{r3.Vector{0.7257192746638208, 0.46058826573818168, 0.51106749441312738}}
poC = Point{r3.Vector{0.72571927671709457, 0.46058826089853633, 0.51106749585908795}}
// The points "x1" and "x2" are exactly proportional, i.e. they both lie
// on a common line through the origin. Both points are considered to be
// normalized, and in fact they both satisfy (x == x.Normalize()).
// Therefore the triangle (x1, x2, -x1) consists of three distinct points
// that all lie on a common line through the origin.
x1 = Point{r3.Vector{0.99999999999999989, 1.4901161193847655e-08, 0}}
x2 = Point{r3.Vector{1, 1.4901161193847656e-08, 0}}
// Here are two more points that are distinct, exactly proportional, and
// that satisfy (x == x.Normalize()).
x3 = Point{r3.Vector{1, 1, 1}.Normalize()}
x4 = Point{x3.Mul(0.99999999999999989)}
// The following three points demonstrate that Normalize() is not idempotent, i.e.
// y0.Normalize() != y0.Normalize().Normalize(). Both points are exactly proportional.
y0 = Point{r3.Vector{1, 1, 0}}
y1 = Point{y0.Normalize()}
y2 = Point{y1.Normalize()}
)
func TestPredicatesRobustSignEqualities(t *testing.T) {
tests := []struct {
p1, p2 Point
want bool
}{
{Point{poC.Sub(poA.Vector)}, Point{poB.Sub(poC.Vector)}, true},
{x1, Point{x1.Normalize()}, true},
{x2, Point{x2.Normalize()}, true},
{x3, Point{x3.Normalize()}, true},
{x4, Point{x4.Normalize()}, true},
{x3, x4, false},
{y1, y2, false},
{y2, Point{y2.Normalize()}, true},
}
for _, test := range tests {
if got := test.p1.Vector == test.p2.Vector; got != test.want {
t.Errorf("Testing equality for RobustSign. %v = %v, got %v want %v", test.p1, test.p2, got, test.want)
}
}
}
func TestPredicatesRobustSign(t *testing.T) {
x := Point{r3.Vector{1, 0, 0}}
y := Point{r3.Vector{0, 1, 0}}
z := Point{r3.Vector{0, 0, 1}}
tests := []struct {
p1, p2, p3 Point
want Direction
}{
// Simple collinear points test cases.
// a == b != c
{x, x, z, Indeterminate},
// a != b == c
{x, y, y, Indeterminate},
// c == a != b
{z, x, z, Indeterminate},
// CCW
{x, y, z, CounterClockwise},
// CW
{z, y, x, Clockwise},
// Edge cases:
// The following points happen to be *exactly collinear* along a line that it
// approximate tangent to the surface of the unit sphere. In fact, C is the
// exact midpoint of the line segment AB. All of these points are close
// enough to unit length to satisfy S2::IsUnitLength().
{
// Until we get ExactSign, this will only return Indeterminate.
// It should be Clockwise.
poA, poB, poC, Indeterminate,
},
// The points "x1" and "x2" are exactly proportional, i.e. they both lie
// on a common line through the origin. Both points are considered to be
// normalized, and in fact they both satisfy (x == x.Normalize()).
// Therefore the triangle (x1, x2, -x1) consists of three distinct points
// that all lie on a common line through the origin.
{
// Until we get ExactSign, this will only return Indeterminate.
// It should be CounterClockwise.
x1, x2, Point{x1.Mul(-1.0)}, Indeterminate,
},
// Here are two more points that are distinct, exactly proportional, and
// that satisfy (x == x.Normalize()).
{
// Until we get ExactSign, this will only return Indeterminate.
// It should be Clockwise.
x3, x4, Point{x3.Mul(-1.0)}, Indeterminate,
},
// The following points demonstrate that Normalize() is not idempotent,
// i.e. y0.Normalize() != y0.Normalize().Normalize(). Both points satisfy
// S2::IsNormalized(), though, and the two points are exactly proportional.
{
// Until we get ExactSign, this will only return Indeterminate.
// It should be CounterClockwise.
y1, y2, Point{y1.Mul(-1.0)}, Indeterminate,
},
}
for _, test := range tests {
result := RobustSign(test.p1, test.p2, test.p3)
if result != test.want {
t.Errorf("RobustSign(%v, %v, %v) got %v, want %v",
test.p1, test.p2, test.p3, result, test.want)
}
// Test RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c
rotated := RobustSign(test.p2, test.p3, test.p1)
if rotated != result {
t.Errorf("RobustSign(%v, %v, %v) vs Rotated RobustSign(%v, %v, %v) got %v, want %v",
test.p1, test.p2, test.p3, test.p2, test.p3, test.p1, rotated, result)
}
// Test RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c
want := Clockwise
if result == Clockwise {
want = CounterClockwise
} else if result == Indeterminate {
want = Indeterminate
}
reversed := RobustSign(test.p3, test.p2, test.p1)
if reversed != want {
t.Errorf("RobustSign(%v, %v, %v) vs Reversed RobustSign(%v, %v, %v) got %v, want %v",
test.p1, test.p2, test.p3, test.p3, test.p2, test.p1, reversed, -1*result)
}
}
// Test cases that should not be indeterminate.
/*
Uncomment these tests once RobustSign is completed.
if got := RobustSign(poA, poB, poC); got == Indeterminate {
t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", poA, poA, poA, got)
}
if got := RobustSign(x1, x2, Point{x1.Mul(-1)}); got == Indeterminate {
t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x1, x2, x1.Mul(-1), got)
}
if got := RobustSign(x3, x4, Point{x3.Mul(-1)}); got == Indeterminate {
t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x3, x4, x3.Mul(-1), got)
}
if got := RobustSign(y1, y2, Point{y1.Mul(-1)}); got == Indeterminate {
t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x1, x2, y1.Mul(-1), got)
}
*/
}
func TestPredicatesStableSignFailureRate(t *testing.T) {
const earthRadiusKm = 6371.01
const iters = 1000
// Verify that stableSign is able to handle most cases where the three
// points are as collinear as possible. (For reference, triageSign fails
// almost 100% of the time on this test.)
//
// Note that the failure rate *decreases* as the points get closer together,
// and the decrease is approximately linear. For example, the failure rate
// is 0.4% for collinear points spaced 1km apart, but only 0.0004% for
// collinear points spaced 1 meter apart.
//
// 1km spacing: < 1% (actual is closer to 0.4%)
// 10km spacing: < 10% (actual is closer to 4%)
want := 0.01
spacing := 1.0
// Estimate the probability that stableSign will not be able to compute
// the determinant sign of a triangle A, B, C consisting of three points
// that are as collinear as possible and spaced the given distance apart
// by counting up the times it returns Indeterminate.
failureCount := 0
m := math.Tan(spacing / earthRadiusKm)
for iter := 0; iter < iters; iter++ {
f := randomFrame()
a := f.col(0)
x := f.col(1)
b := Point{a.Sub(x.Mul(m)).Normalize()}
c := Point{a.Add(x.Mul(m)).Normalize()}
sign := stableSign(a, b, c)
if sign != Indeterminate {
// TODO(roberts): Once exactSign is implemented, uncomment this case.
//if got := exactSign(a, b, c, true); got != sign {
// t.Errorf("exactSign(%v, %v, %v, true) = %v, want %v", a, b, c, got, sign)
//}
} else {
failureCount++
}
}
rate := float64(failureCount) / float64(iters)
if rate >= want {
t.Errorf("stableSign failure rate for spacing %v km = %v, want %v", spacing, rate, want)
}
}
func BenchmarkSign(b *testing.B) {
p1 := Point{r3.Vector{-3, -1, 4}}
p2 := Point{r3.Vector{2, -1, -3}}
p3 := Point{r3.Vector{1, -2, 0}}
for i := 0; i < b.N; i++ {
Sign(p1, p2, p3)
}
}
// BenchmarkRobustSignSimple runs the benchmark for points that satisfy the first
// checks in RobustSign to compare the performance to that of Sign().
func BenchmarkRobustSignSimple(b *testing.B) {
p1 := Point{r3.Vector{-3, -1, 4}}
p2 := Point{r3.Vector{2, -1, -3}}
p3 := Point{r3.Vector{1, -2, 0}}
for i := 0; i < b.N; i++ {
RobustSign(p1, p2, p3)
}
}
// BenchmarkRobustSignNearCollinear runs the benchmark for points that are almost but not
// quite collinear, so the tests have to use most of the calculations of RobustSign
// before getting to an answer.
func BenchmarkRobustSignNearCollinear(b *testing.B) {
for i := 0; i < b.N; i++ {
RobustSign(poA, poB, poC)
}
}
|