File: predicates_test.go

package info (click to toggle)
golang-github-golang-geo 0.0~git20170112.0.f819552-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 832 kB
  • sloc: makefile: 2
file content (314 lines) | stat: -rw-r--r-- 11,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
Copyright 2016 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package s2

import (
	"math"
	"testing"

	"github.com/golang/geo/r3"
)

func TestPredicatesSign(t *testing.T) {
	tests := []struct {
		p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z float64
		want                                        bool
	}{
		{1, 0, 0, 0, 1, 0, 0, 0, 1, true},
		{0, 1, 0, 0, 0, 1, 1, 0, 0, true},
		{0, 0, 1, 1, 0, 0, 0, 1, 0, true},
		{1, 1, 0, 0, 1, 1, 1, 0, 1, true},
		{-3, -1, 4, 2, -1, -3, 1, -2, 0, true},

		// All degenerate cases of Sign(). Let M_1, M_2, ... be the sequence of
		// submatrices whose determinant sign is tested by that function. Then the
		// i-th test below is a 3x3 matrix M (with rows A, B, C) such that:
		//
		//    det(M) = 0
		//    det(M_j) = 0 for j < i
		//    det(M_i) != 0
		//    A < B < C in lexicographic order.
		// det(M_1) = b0*c1 - b1*c0
		{-3, -1, 0, -2, 1, 0, 1, -2, 0, false},
		// det(M_2) = b2*c0 - b0*c2
		{-6, 3, 3, -4, 2, -1, -2, 1, 4, false},
		// det(M_3) = b1*c2 - b2*c1
		{0, -1, -1, 0, 1, -2, 0, 2, 1, false},
		// From this point onward, B or C must be zero, or B is proportional to C.
		// det(M_4) = c0*a1 - c1*a0
		{-1, 2, 7, 2, 1, -4, 4, 2, -8, false},
		// det(M_5) = c0
		{-4, -2, 7, 2, 1, -4, 4, 2, -8, false},
		// det(M_6) = -c1
		{0, -5, 7, 0, -4, 8, 0, -2, 4, false},
		// det(M_7) = c2*a0 - c0*a2
		{-5, -2, 7, 0, 0, -2, 0, 0, -1, false},
		// det(M_8) = c2
		{0, -2, 7, 0, 0, 1, 0, 0, 2, false},
	}

	for _, test := range tests {
		p1 := Point{r3.Vector{test.p1x, test.p1y, test.p1z}}
		p2 := Point{r3.Vector{test.p2x, test.p2y, test.p2z}}
		p3 := Point{r3.Vector{test.p3x, test.p3y, test.p3z}}
		result := Sign(p1, p2, p3)
		if result != test.want {
			t.Errorf("Sign(%v, %v, %v) = %v, want %v", p1, p2, p3, result, test.want)
		}
		if test.want {
			// For these cases we can test the reversibility condition
			result = Sign(p3, p2, p1)
			if result == test.want {
				t.Errorf("Sign(%v, %v, %v) = %v, want %v", p3, p2, p1, result, !test.want)
			}
		}
	}
}

// Points used in the various RobustSign tests.
var (
	// The following points happen to be *exactly collinear* along a line that it
	// approximate tangent to the surface of the unit sphere. In fact, C is the
	// exact midpoint of the line segment AB. All of these points are close
	// enough to unit length to satisfy r3.Vector.IsUnit().
	poA = Point{r3.Vector{0.72571927877036835, 0.46058825605889098, 0.51106749730504852}}
	poB = Point{r3.Vector{0.7257192746638208, 0.46058826573818168, 0.51106749441312738}}
	poC = Point{r3.Vector{0.72571927671709457, 0.46058826089853633, 0.51106749585908795}}

	// The points "x1" and "x2" are exactly proportional, i.e. they both lie
	// on a common line through the origin. Both points are considered to be
	// normalized, and in fact they both satisfy (x == x.Normalize()).
	// Therefore the triangle (x1, x2, -x1) consists of three distinct points
	// that all lie on a common line through the origin.
	x1 = Point{r3.Vector{0.99999999999999989, 1.4901161193847655e-08, 0}}
	x2 = Point{r3.Vector{1, 1.4901161193847656e-08, 0}}

	// Here are two more points that are distinct, exactly proportional, and
	// that satisfy (x == x.Normalize()).
	x3 = Point{r3.Vector{1, 1, 1}.Normalize()}
	x4 = Point{x3.Mul(0.99999999999999989)}

	// The following three points demonstrate that Normalize() is not idempotent, i.e.
	// y0.Normalize() != y0.Normalize().Normalize(). Both points are exactly proportional.
	y0 = Point{r3.Vector{1, 1, 0}}
	y1 = Point{y0.Normalize()}
	y2 = Point{y1.Normalize()}
)

func TestPredicatesRobustSignEqualities(t *testing.T) {
	tests := []struct {
		p1, p2 Point
		want   bool
	}{
		{Point{poC.Sub(poA.Vector)}, Point{poB.Sub(poC.Vector)}, true},
		{x1, Point{x1.Normalize()}, true},
		{x2, Point{x2.Normalize()}, true},
		{x3, Point{x3.Normalize()}, true},
		{x4, Point{x4.Normalize()}, true},
		{x3, x4, false},
		{y1, y2, false},
		{y2, Point{y2.Normalize()}, true},
	}

	for _, test := range tests {
		if got := test.p1.Vector == test.p2.Vector; got != test.want {
			t.Errorf("Testing equality for RobustSign. %v = %v, got %v want %v", test.p1, test.p2, got, test.want)
		}
	}
}

func TestPredicatesRobustSign(t *testing.T) {
	x := Point{r3.Vector{1, 0, 0}}
	y := Point{r3.Vector{0, 1, 0}}
	z := Point{r3.Vector{0, 0, 1}}

	tests := []struct {
		p1, p2, p3 Point
		want       Direction
	}{
		// Simple collinear points test cases.
		// a == b != c
		{x, x, z, Indeterminate},
		// a != b == c
		{x, y, y, Indeterminate},
		// c == a != b
		{z, x, z, Indeterminate},
		// CCW
		{x, y, z, CounterClockwise},
		// CW
		{z, y, x, Clockwise},

		// Edge cases:
		// The following points happen to be *exactly collinear* along a line that it
		// approximate tangent to the surface of the unit sphere. In fact, C is the
		// exact midpoint of the line segment AB. All of these points are close
		// enough to unit length to satisfy S2::IsUnitLength().
		{
			// Until we get ExactSign, this will only return Indeterminate.
			// It should be Clockwise.
			poA, poB, poC, Indeterminate,
		},

		// The points "x1" and "x2" are exactly proportional, i.e. they both lie
		// on a common line through the origin. Both points are considered to be
		// normalized, and in fact they both satisfy (x == x.Normalize()).
		// Therefore the triangle (x1, x2, -x1) consists of three distinct points
		// that all lie on a common line through the origin.
		{
			// Until we get ExactSign, this will only return Indeterminate.
			// It should be CounterClockwise.
			x1, x2, Point{x1.Mul(-1.0)}, Indeterminate,
		},

		// Here are two more points that are distinct, exactly proportional, and
		// that satisfy (x == x.Normalize()).
		{
			// Until we get ExactSign, this will only return Indeterminate.
			// It should be Clockwise.
			x3, x4, Point{x3.Mul(-1.0)}, Indeterminate,
		},

		// The following points demonstrate that Normalize() is not idempotent,
		// i.e. y0.Normalize() != y0.Normalize().Normalize(). Both points satisfy
		// S2::IsNormalized(), though, and the two points are exactly proportional.
		{
			// Until we get ExactSign, this will only return Indeterminate.
			// It should be CounterClockwise.
			y1, y2, Point{y1.Mul(-1.0)}, Indeterminate,
		},
	}

	for _, test := range tests {
		result := RobustSign(test.p1, test.p2, test.p3)
		if result != test.want {
			t.Errorf("RobustSign(%v, %v, %v) got %v, want %v",
				test.p1, test.p2, test.p3, result, test.want)
		}
		// Test RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c
		rotated := RobustSign(test.p2, test.p3, test.p1)
		if rotated != result {
			t.Errorf("RobustSign(%v, %v, %v) vs Rotated RobustSign(%v, %v, %v) got %v, want %v",
				test.p1, test.p2, test.p3, test.p2, test.p3, test.p1, rotated, result)
		}
		// Test RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c
		want := Clockwise
		if result == Clockwise {
			want = CounterClockwise
		} else if result == Indeterminate {
			want = Indeterminate
		}
		reversed := RobustSign(test.p3, test.p2, test.p1)
		if reversed != want {
			t.Errorf("RobustSign(%v, %v, %v) vs Reversed RobustSign(%v, %v, %v) got %v, want %v",
				test.p1, test.p2, test.p3, test.p3, test.p2, test.p1, reversed, -1*result)
		}
	}

	// Test cases that should not be indeterminate.
	/*
		Uncomment these tests once RobustSign is completed.
		if got := RobustSign(poA, poB, poC); got == Indeterminate {
			t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", poA, poA, poA, got)
		}
		if got := RobustSign(x1, x2, Point{x1.Mul(-1)}); got == Indeterminate {
			t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x1, x2, x1.Mul(-1), got)
		}
		if got := RobustSign(x3, x4, Point{x3.Mul(-1)}); got == Indeterminate {
			t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x3, x4, x3.Mul(-1), got)
		}
		if got := RobustSign(y1, y2, Point{y1.Mul(-1)}); got == Indeterminate {
			t.Errorf("RobustSign(%v,%v,%v) = %v, want not Indeterminate", x1, x2, y1.Mul(-1), got)
		}
	*/
}

func TestPredicatesStableSignFailureRate(t *testing.T) {
	const earthRadiusKm = 6371.01
	const iters = 1000

	// Verify that stableSign is able to handle most cases where the three
	// points are as collinear as possible. (For reference, triageSign fails
	// almost 100% of the time on this test.)
	//
	// Note that the failure rate *decreases* as the points get closer together,
	// and the decrease is approximately linear. For example, the failure rate
	// is 0.4% for collinear points spaced 1km apart, but only 0.0004% for
	// collinear points spaced 1 meter apart.
	//
	//  1km spacing: <  1% (actual is closer to 0.4%)
	// 10km spacing: < 10% (actual is closer to 4%)
	want := 0.01
	spacing := 1.0

	// Estimate the probability that stableSign will not be able to compute
	// the determinant sign of a triangle A, B, C consisting of three points
	// that are as collinear as possible and spaced the given distance apart
	// by counting up the times it returns Indeterminate.
	failureCount := 0
	m := math.Tan(spacing / earthRadiusKm)
	for iter := 0; iter < iters; iter++ {
		f := randomFrame()
		a := f.col(0)
		x := f.col(1)

		b := Point{a.Sub(x.Mul(m)).Normalize()}
		c := Point{a.Add(x.Mul(m)).Normalize()}
		sign := stableSign(a, b, c)
		if sign != Indeterminate {
			// TODO(roberts): Once exactSign is implemented, uncomment this case.
			//if got := exactSign(a, b, c, true); got != sign {
			//	t.Errorf("exactSign(%v, %v, %v, true) = %v, want %v", a, b, c, got, sign)
			//}
		} else {
			failureCount++
		}
	}

	rate := float64(failureCount) / float64(iters)
	if rate >= want {
		t.Errorf("stableSign failure rate for spacing %v km = %v, want %v", spacing, rate, want)
	}
}

func BenchmarkSign(b *testing.B) {
	p1 := Point{r3.Vector{-3, -1, 4}}
	p2 := Point{r3.Vector{2, -1, -3}}
	p3 := Point{r3.Vector{1, -2, 0}}
	for i := 0; i < b.N; i++ {
		Sign(p1, p2, p3)
	}
}

// BenchmarkRobustSignSimple runs the benchmark for points that satisfy the first
// checks in RobustSign to compare the performance to that of Sign().
func BenchmarkRobustSignSimple(b *testing.B) {
	p1 := Point{r3.Vector{-3, -1, 4}}
	p2 := Point{r3.Vector{2, -1, -3}}
	p3 := Point{r3.Vector{1, -2, 0}}
	for i := 0; i < b.N; i++ {
		RobustSign(p1, p2, p3)
	}
}

// BenchmarkRobustSignNearCollinear runs the benchmark for points that are almost but not
// quite collinear, so the tests have to use most of the calculations of RobustSign
// before getting to an answer.
func BenchmarkRobustSignNearCollinear(b *testing.B) {
	for i := 0; i < b.N; i++ {
		RobustSign(poA, poB, poC)
	}
}