1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
// Copyright 2012 The LevelDB-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package leveldb
import (
"fmt"
"sort"
"github.com/golang/leveldb/db"
)
// fileMetadata holds the metadata for an on-disk table.
type fileMetadata struct {
// fileNum is the file number.
fileNum uint64
// size is the size of the file, in bytes.
size uint64
// smallest and largest are the inclusive bounds for the internal keys
// stored in the table.
smallest, largest internalKey
}
// totalSize returns the total size of all the files in f.
func totalSize(f []fileMetadata) (size uint64) {
for _, x := range f {
size += x.size
}
return size
}
// ikeyRange returns the minimum smallest and maximum largest internalKey for
// all the fileMetadata in f0 and f1.
func ikeyRange(icmp db.Comparer, f0, f1 []fileMetadata) (smallest, largest internalKey) {
first := true
for _, f := range [2][]fileMetadata{f0, f1} {
for _, meta := range f {
if first {
first = false
smallest, largest = meta.smallest, meta.largest
continue
}
if icmp.Compare(meta.smallest, smallest) < 0 {
smallest = meta.smallest
}
if icmp.Compare(meta.largest, largest) > 0 {
largest = meta.largest
}
}
}
return smallest, largest
}
type byFileNum []fileMetadata
func (b byFileNum) Len() int { return len(b) }
func (b byFileNum) Less(i, j int) bool { return b[i].fileNum < b[j].fileNum }
func (b byFileNum) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
type bySmallest struct {
dat []fileMetadata
cmp db.Comparer
}
func (b bySmallest) Len() int { return len(b.dat) }
func (b bySmallest) Less(i, j int) bool {
return b.cmp.Compare(b.dat[i].smallest, b.dat[j].smallest) < 0
}
func (b bySmallest) Swap(i, j int) { b.dat[i], b.dat[j] = b.dat[j], b.dat[i] }
const numLevels = 7
// version is a collection of file metadata for on-disk tables at various
// levels. In-memory DBs are written to level-0 tables, and compactions
// migrate data from level N to level N+1. The tables map internal keys (which
// are a user key, a delete or set bit, and a sequence number) to user values.
//
// The tables at level 0 are sorted by increasing fileNum. If two level 0
// tables have fileNums i and j and i < j, then the sequence numbers of every
// internal key in table i are all less than those for table j. The range of
// internal keys [fileMetadata.smallest, fileMetadata.largest] in each level 0
// table may overlap.
//
// The tables at any non-0 level are sorted by their internal key range and any
// two tables at the same non-0 level do not overlap.
//
// The internal key ranges of two tables at different levels X and Y may
// overlap, for any X != Y.
//
// Finally, for every internal key in a table at level X, there is no internal
// key in a higher level table that has both the same user key and a higher
// sequence number.
type version struct {
files [numLevels][]fileMetadata
// Every version is part of a circular doubly-linked list of versions.
// One of those versions is a versionSet.dummyVersion.
prev, next *version
// These fields are the level that should be compacted next and its
// compaction score. A score < 1 means that compaction is not strictly
// needed.
compactionScore float64
compactionLevel int
}
// updateCompactionScore updates v's compaction score and level.
func (v *version) updateCompactionScore() {
// We treat level-0 specially by bounding the number of files instead of
// number of bytes for two reasons:
//
// (1) With larger write-buffer sizes, it is nice not to do too many
// level-0 compactions.
//
// (2) The files in level-0 are merged on every read and therefore we
// wish to avoid too many files when the individual file size is small
// (perhaps because of a small write-buffer setting, or very high
// compression ratios, or lots of overwrites/deletions).
v.compactionScore = float64(len(v.files[0])) / l0CompactionTrigger
v.compactionLevel = 0
maxBytes := float64(10 * 1024 * 1024)
for level := 1; level < numLevels-1; level++ {
score := float64(totalSize(v.files[level])) / maxBytes
if score > v.compactionScore {
v.compactionScore = score
v.compactionLevel = level
}
maxBytes *= 10
}
}
// overlaps returns all elements of v.files[level] whose user key range
// intersects the inclusive range [ukey0, ukey1]. If level is non-zero then the
// user key ranges of v.files[level] are assumed to not overlap (although they
// may touch). If level is zero then that assumption cannot be made, and the
// [ukey0, ukey1] range is expanded to the union of those matching ranges so
// far and the computation is repeated until [ukey0, ukey1] stabilizes.
func (v *version) overlaps(level int, ucmp db.Comparer, ukey0, ukey1 []byte) (ret []fileMetadata) {
loop:
for {
for _, meta := range v.files[level] {
m0 := meta.smallest.ukey()
m1 := meta.largest.ukey()
if ucmp.Compare(m1, ukey0) < 0 {
// meta is completely before the specified range; skip it.
continue
}
if ucmp.Compare(m0, ukey1) > 0 {
// meta is completely after the specified range; skip it.
continue
}
ret = append(ret, meta)
// If level == 0, check if the newly added fileMetadata has
// expanded the range. If so, restart the search.
if level != 0 {
continue
}
restart := false
if ucmp.Compare(m0, ukey0) < 0 {
ukey0 = m0
restart = true
}
if ucmp.Compare(m1, ukey1) > 0 {
ukey1 = m1
restart = true
}
if restart {
ret = ret[:0]
continue loop
}
}
return ret
}
}
// checkOrdering checks that the files are consistent with respect to
// increasing file numbers (for level 0 files) and increasing and non-
// overlapping internal key ranges (for level non-0 files).
func (v *version) checkOrdering(icmp db.Comparer) error {
for level, ff := range v.files {
if level == 0 {
prevFileNum := uint64(0)
for i, f := range ff {
if i != 0 && prevFileNum >= f.fileNum {
return fmt.Errorf("level 0 files are not in increasing fileNum order: %d, %d", prevFileNum, f.fileNum)
}
prevFileNum = f.fileNum
}
} else {
prevLargest := internalKey(nil)
for i, f := range ff {
if i != 0 && icmp.Compare(prevLargest, f.smallest) >= 0 {
return fmt.Errorf("level non-0 files are not in increasing ikey order: %q, %q", prevLargest, f.smallest)
}
if icmp.Compare(f.smallest, f.largest) > 0 {
return fmt.Errorf("level non-0 file has inconsistent bounds: %q, %q", f.smallest, f.largest)
}
prevLargest = f.largest
}
}
}
return nil
}
// tableIkeyFinder finds the given ikey in the table of the given file number.
type tableIkeyFinder interface {
find(fileNum uint64, ikey internalKey) (db.Iterator, error)
}
// get looks up the internal key ikey0 in v's tables such that ikey and ikey0
// have the same user key, and ikey0's sequence number is the highest such
// sequence number that is less than or equal to ikey's sequence number.
//
// If ikey0's kind is set, the value for that previous set action is returned.
// If ikey0's kind is delete, the db.ErrNotFound error is returned.
// If there is no such ikey0, the db.ErrNotFound error is returned.
func (v *version) get(ikey internalKey, tiFinder tableIkeyFinder, ucmp db.Comparer, ro *db.ReadOptions) ([]byte, error) {
ukey := ikey.ukey()
// Iterate through v's tables, calling internalGet if the table's bounds
// might contain ikey. Due to the order in which we search the tables, and
// the internalKeyComparer's ordering within a table, we stop after the
// first conclusive result.
// Search the level 0 files in decreasing fileNum order,
// which is also decreasing sequence number order.
icmp := internalKeyComparer{ucmp}
for i := len(v.files[0]) - 1; i >= 0; i-- {
f := v.files[0][i]
// We compare user keys on the low end, as we do not want to reject a table
// whose smallest internal key may have the same user key and a lower sequence
// number. An internalKeyComparer sorts increasing by user key but then
// descending by sequence number.
if ucmp.Compare(ukey, f.smallest.ukey()) < 0 {
continue
}
// We compare internal keys on the high end. It gives a tighter bound than
// comparing user keys.
if icmp.Compare(ikey, f.largest) > 0 {
continue
}
iter, err := tiFinder.find(f.fileNum, ikey)
if err != nil {
return nil, fmt.Errorf("leveldb: could not open table %d: %v", f.fileNum, err)
}
value, conclusive, err := internalGet(iter, ucmp, ukey)
if conclusive {
return value, err
}
}
// Search the remaining levels.
for level := 1; level < len(v.files); level++ {
n := len(v.files[level])
if n == 0 {
continue
}
// Find the earliest file at that level whose largest key is >= ikey.
index := sort.Search(n, func(i int) bool {
return icmp.Compare(v.files[level][i].largest, ikey) >= 0
})
if index == n {
continue
}
f := v.files[level][index]
if ucmp.Compare(ukey, f.smallest.ukey()) < 0 {
continue
}
iter, err := tiFinder.find(f.fileNum, ikey)
if err != nil {
return nil, fmt.Errorf("leveldb: could not open table %d: %v", f.fileNum, err)
}
value, conclusive, err := internalGet(iter, ucmp, ukey)
if conclusive {
return value, err
}
}
return nil, db.ErrNotFound
}
// internalGet looks up the first key/value pair whose (internal) key is >=
// ikey, according to the internal key ordering, and also returns whether or
// not that search was conclusive.
//
// If there is no such pair, or that pair's key and ikey do not share the same
// user key (according to ucmp), then conclusive will be false. Otherwise,
// conclusive will be true and:
// * if that pair's key's kind is set, that pair's value will be returned,
// * if that pair's key's kind is delete, db.ErrNotFound will be returned.
// If the returned error is non-nil then conclusive will be true.
func internalGet(t db.Iterator, ucmp db.Comparer, ukey []byte) (value []byte, conclusive bool, err error) {
if !t.Next() {
err = t.Close()
return nil, err != nil, err
}
ikey0 := internalKey(t.Key())
if !ikey0.valid() {
t.Close()
return nil, true, fmt.Errorf("leveldb: corrupt table: invalid internal key")
}
if ucmp.Compare(ukey, ikey0.ukey()) != 0 {
err = t.Close()
return nil, err != nil, err
}
if ikey0.kind() == internalKeyKindDelete {
t.Close()
return nil, true, db.ErrNotFound
}
return t.Value(), true, t.Close()
}
|