File: inlining.go

package info (click to toggle)
golang-github-google-cel-go 0.18.2%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,888 kB
  • sloc: sh: 93; makefile: 12
file content (240 lines) | stat: -rw-r--r-- 8,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package cel

import (
	"github.com/google/cel-go/common/ast"
	"github.com/google/cel-go/common/containers"
	"github.com/google/cel-go/common/operators"
	"github.com/google/cel-go/common/overloads"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/traits"
)

// InlineVariable holds a variable name to be matched and an AST representing
// the expression graph which should be used to replace it.
type InlineVariable struct {
	name  string
	alias string
	def   *ast.AST
}

// Name returns the qualified variable or field selection to replace.
func (v *InlineVariable) Name() string {
	return v.name
}

// Alias returns the alias to use when performing cel.bind() calls during inlining.
func (v *InlineVariable) Alias() string {
	return v.alias
}

// Expr returns the inlined expression value.
func (v *InlineVariable) Expr() ast.Expr {
	return v.def.Expr()
}

// Type indicates the inlined expression type.
func (v *InlineVariable) Type() *Type {
	return v.def.GetType(v.def.Expr().ID())
}

// NewInlineVariable declares a variable name to be replaced by a checked expression.
func NewInlineVariable(name string, definition *Ast) *InlineVariable {
	return NewInlineVariableWithAlias(name, name, definition)
}

// NewInlineVariableWithAlias declares a variable name to be replaced by a checked expression.
// If the variable occurs more than once, the provided alias will be used to replace the expressions
// where the variable name occurs.
func NewInlineVariableWithAlias(name, alias string, definition *Ast) *InlineVariable {
	return &InlineVariable{name: name, alias: alias, def: definition.impl}
}

// NewInliningOptimizer creates and optimizer which replaces variables with expression definitions.
//
// If a variable occurs one time, the variable is replaced by the inline definition. If the
// variable occurs more than once, the variable occurences are replaced by a cel.bind() call.
func NewInliningOptimizer(inlineVars ...*InlineVariable) ASTOptimizer {
	return &inliningOptimizer{variables: inlineVars}
}

type inliningOptimizer struct {
	variables []*InlineVariable
}

func (opt *inliningOptimizer) Optimize(ctx *OptimizerContext, a *ast.AST) *ast.AST {
	root := ast.NavigateAST(a)
	for _, inlineVar := range opt.variables {
		matches := ast.MatchDescendants(root, opt.matchVariable(inlineVar.Name()))
		// Skip cases where the variable isn't in the expression graph
		if len(matches) == 0 {
			continue
		}

		// For a single match, do a direct replacement of the expression sub-graph.
		if len(matches) == 1 || !isBindable(matches, inlineVar.Expr(), inlineVar.Type()) {
			for _, match := range matches {
				// Copy the inlined AST expr and source info.
				copyExpr := copyASTAndMetadata(ctx, inlineVar.def)
				opt.inlineExpr(ctx, match, copyExpr, inlineVar.Type())
			}
			continue
		}

		// For multiple matches, find the least common ancestor (lca) and insert the
		// variable as a cel.bind() macro.
		var lca ast.NavigableExpr = root
		lcaAncestorCount := 0
		ancestors := map[int64]int{}
		for _, match := range matches {
			// Update the identifier matches with the provided alias.
			parent, found := match, true
			for found {
				ancestorCount, hasAncestor := ancestors[parent.ID()]
				if !hasAncestor {
					ancestors[parent.ID()] = 1
					parent, found = parent.Parent()
					continue
				}
				if lcaAncestorCount < ancestorCount || (lcaAncestorCount == ancestorCount && lca.Depth() < parent.Depth()) {
					lca = parent
					lcaAncestorCount = ancestorCount
				}
				ancestors[parent.ID()] = ancestorCount + 1
				parent, found = parent.Parent()
			}
			aliasExpr := ctx.NewIdent(inlineVar.Alias())
			opt.inlineExpr(ctx, match, aliasExpr, inlineVar.Type())
		}

		// Copy the inlined AST expr and source info.
		copyExpr := copyASTAndMetadata(ctx, inlineVar.def)
		// Update the least common ancestor by inserting a cel.bind() call to the alias.
		inlined, bindMacro := ctx.NewBindMacro(lca.ID(), inlineVar.Alias(), copyExpr, lca)
		opt.inlineExpr(ctx, lca, inlined, inlineVar.Type())
		ctx.sourceInfo.SetMacroCall(lca.ID(), bindMacro)
	}
	return a
}

// copyASTAndMetadata copies the input AST and propagates the macro metadata into the AST being
// optimized.
func copyASTAndMetadata(ctx *OptimizerContext, a *ast.AST) ast.Expr {
	copyExpr, copyInfo := ctx.CopyAST(a)
	// Add in the macro calls from the inlined AST
	for id, call := range copyInfo.MacroCalls() {
		ctx.sourceInfo.SetMacroCall(id, call)
	}
	return copyExpr
}

// inlineExpr replaces the current expression with the inlined one, unless the location of the inlining
// happens within a presence test, e.g. has(a.b.c) -> inline alpha for a.b.c in which case an attempt is
// made to determine whether the inlined value can be presence or existence tested.
func (opt *inliningOptimizer) inlineExpr(ctx *OptimizerContext, prev ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) {
	switch prev.Kind() {
	case ast.SelectKind:
		sel := prev.AsSelect()
		if !sel.IsTestOnly() {
			ctx.UpdateExpr(prev, inlined)
			return
		}
		opt.rewritePresenceExpr(ctx, prev, inlined, inlinedType)
	default:
		ctx.UpdateExpr(prev, inlined)
	}
}

// rewritePresenceExpr converts the inlined expression, when it occurs within a has() macro, to type-safe
// expression appropriate for the inlined type, if possible.
//
// If the rewrite is not possible an error is reported at the inline expression site.
func (opt *inliningOptimizer) rewritePresenceExpr(ctx *OptimizerContext, prev, inlined ast.Expr, inlinedType *Type) {
	// If the input inlined expression is not a select expression it won't work with the has()
	// macro. Attempt to rewrite the presence test in terms of the typed input, otherwise error.
	if inlined.Kind() == ast.SelectKind {
		presenceTest, hasMacro := ctx.NewHasMacro(prev.ID(), inlined)
		ctx.UpdateExpr(prev, presenceTest)
		ctx.sourceInfo.SetMacroCall(prev.ID(), hasMacro)
		return
	}

	ctx.sourceInfo.ClearMacroCall(prev.ID())
	if inlinedType.IsAssignableType(NullType) {
		ctx.UpdateExpr(prev,
			ctx.NewCall(operators.NotEquals,
				inlined,
				ctx.NewLiteral(types.NullValue),
			))
		return
	}
	if inlinedType.HasTrait(traits.SizerType) {
		ctx.UpdateExpr(prev,
			ctx.NewCall(operators.NotEquals,
				ctx.NewMemberCall(overloads.Size, inlined),
				ctx.NewLiteral(types.IntZero),
			))
		return
	}
	ctx.ReportErrorAtID(prev.ID(), "unable to inline expression type %v into presence test", inlinedType)
}

// isBindable indicates whether the inlined type can be used within a cel.bind() if the expression
// being replaced occurs within a presence test. Value types with a size() method or field selection
// support can be bound.
//
// In future iterations, support may also be added for indexer types which can be rewritten as an `in`
// expression; however, this would imply a rewrite of the inlined expression that may not be necessary
// in most cases.
func isBindable(matches []ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) bool {
	if inlinedType.IsAssignableType(NullType) ||
		inlinedType.HasTrait(traits.SizerType) ||
		inlinedType.HasTrait(traits.FieldTesterType) {
		return true
	}
	for _, m := range matches {
		if m.Kind() != ast.SelectKind {
			continue
		}
		sel := m.AsSelect()
		if sel.IsTestOnly() {
			return false
		}
	}
	return true
}

// matchVariable matches simple identifiers, select expressions, and presence test expressions
// which match the (potentially) qualified variable name provided as input.
//
// Note, this function does not support inlining against select expressions which includes optional
// field selection. This may be a future refinement.
func (opt *inliningOptimizer) matchVariable(varName string) ast.ExprMatcher {
	return func(e ast.NavigableExpr) bool {
		if e.Kind() == ast.IdentKind && e.AsIdent() == varName {
			return true
		}
		if e.Kind() == ast.SelectKind {
			sel := e.AsSelect()
			// While the `ToQualifiedName` call could take the select directly, this
			// would skip presence tests from possible matches, which we would like
			// to include.
			qualName, found := containers.ToQualifiedName(sel.Operand())
			return found && qualName+"."+sel.FieldName() == varName
		}
		return false
	}
}