1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains code that demonstrates common CEL features.
// This code is intended for use with the CEL Codelab: go/cel-codelab-go
package main
import (
"encoding/json"
"fmt"
"reflect"
"sort"
"strings"
"time"
"github.com/google/cel-go/cel"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/golang/glog"
"google.golang.org/protobuf/encoding/protojson"
"google.golang.org/protobuf/encoding/prototext"
"google.golang.org/protobuf/proto"
rpcpb "google.golang.org/genproto/googleapis/rpc/context/attribute_context"
structpb "google.golang.org/protobuf/types/known/structpb"
tpb "google.golang.org/protobuf/types/known/timestamppb"
)
func main() {
exercise1()
exercise2()
exercise3()
exercise4()
exercise5()
exercise6()
exercise7()
exercise8()
}
// exercise1 evaluates a simple literal expression: "Hello, World!"
//
// Compile, eval, profit!
func exercise1() {
fmt.Println("=== Exercise 1: Hello World ===\n")
fmt.Println()
}
// exercise2 shows how to declare and use variables in expressions.
//
// Given a `request` of type `google.rpc.context.AttributeContext.Request`
// determine whether a specific auth claim is set.
func exercise2() {
fmt.Println("=== Exercise 2: Variables ===\n")
fmt.Println()
}
// exercise3 demonstrates how CEL's commutative logical operators work.
//
// Construct an expression which checks whether the `request.auth.claims.group`
// value is equal to `admin` or the `request.auth.principal` is
// `user:me@acme.co` and the `request.time` is during work hours (9:00 - 17:00)
//
// Evaluate the expression once with a request containing no claims but which
// sets the appropriate principal and occurs at 12:00 hours. Then evaluate the
// request a second time at midnight. Observe the difference in output.
func exercise3() {
fmt.Println("=== Exercise 3: Logical AND/OR ===\n")
fmt.Println()
}
// exercise4 demonstrates how to extend CEL with custom functions.
//
// Declare a `contains` member function on map types that returns a boolean
// indicating whether the map contains the key-value pair.
func exercise4() {
fmt.Println("=== Exercise 4: Customization ===\n")
fmt.Println()
}
// exercise5 covers how to build complex objects as CEL literals.
//
// Given the input `now`, construct a JWT with an expiry of 5 minutes.
func exercise5() {
fmt.Println("=== Exercise 5: Building JSON ===\n")
fmt.Println()
}
// exercise6 describes how to build proto message types within CEL.
//
// Given an input `jwt` and time `now` construct a
// `google.rpc.context.AttributeContext.Request` with the `time` and `auth`
// fields populated according to the go/api-attributes specification.
func exercise6() {
fmt.Println("=== Exercise 6: Building Protos ===\n")
fmt.Println()
}
// exercise7 introduces macros for dealing with repeated fields and maps.
//
// Determine whether the `jwt.extra_claims` has at least one key that starts
// with the `group` prefix, and ensure that all group-like keys have list
// values containing only strings that end with '@acme.co`.
func exercise7() {
fmt.Println("=== Exercise 7: Macros ===\n")
fmt.Println()
}
// exercise8 covers some useful features of CEL-Go which can be used to
// improve performance and better understand evaluation behavior.
//
// Turn on the optimization, exhaustive eval, and state tracking
// `cel.ProgramOption` flags to see the impact on evaluation behavior.
//
// Also, turn on the homogeneous aggregate literals flag to disable
// heterogeneous list and map literals.
func exercise8() {
fmt.Println("=== Exercise 8: Tuning ===\n")
fmt.Println()
}
// Functions to assist with CEL execution.
// compile will parse and check an expression `expr` against a given
// environment `env` and determine whether the resulting type of the expression
// matches the `exprType` provided as input.
func compile(env *cel.Env, expr string, celType *cel.Type) *cel.Ast {
ast, iss := env.Compile(expr)
if iss.Err() != nil {
glog.Exit(iss.Err())
}
if !reflect.DeepEqual(ast.OutputType(), celType) {
glog.Exitf(
"Got %v, wanted %v result type", ast.OutputType(), celType)
}
fmt.Printf("%s\n\n", strings.ReplaceAll(expr, "\t", " "))
return ast
}
// eval will evaluate a given program `prg` against a set of variables `vars`
// and return the output, eval details (optional), or error that results from
// evaluation.
func eval(prg cel.Program,
vars any) (out ref.Val, det *cel.EvalDetails, err error) {
varMap, isMap := vars.(map[string]any)
fmt.Println("------ input ------")
if !isMap {
fmt.Printf("(%T)\n", vars)
} else {
for k, v := range varMap {
switch val := v.(type) {
case proto.Message:
bytes, err := prototext.Marshal(val)
if err != nil {
glog.Exitf("failed to marshal proto to text: %v", val)
}
fmt.Printf("%s = %s", k, string(bytes))
case map[string]any:
b, _ := json.MarshalIndent(v, "", " ")
fmt.Printf("%s = %v\n", k, string(b))
case uint64:
fmt.Printf("%s = %vu\n", k, v)
default:
fmt.Printf("%s = %v\n", k, v)
}
}
}
fmt.Println()
out, det, err = prg.Eval(vars)
report(out, det, err)
fmt.Println()
return
}
// report prints out the result of evaluation in human-friendly terms.
func report(result ref.Val, details *cel.EvalDetails, err error) {
fmt.Println("------ result ------")
if err != nil {
fmt.Printf("error: %s\n", err)
} else {
fmt.Printf("value: %v (%T)\n", result, result)
}
if details != nil {
fmt.Printf("\n------ eval states ------\n")
state := details.State()
stateIDs := state.IDs()
ids := make([]int, len(stateIDs), len(stateIDs))
for i, id := range stateIDs {
ids[i] = int(id)
}
sort.Ints(ids)
for _, id := range ids {
v, found := state.Value(int64(id))
if !found {
continue
}
fmt.Printf("%d: %v (%T)\n", id, v, v)
}
}
}
// mapContainsKeyValue implements the custom function:
//
// `map.contains(key, value) bool`.
func mapContainsKeyValue(args ...ref.Val) ref.Val {
// The declaration of the function ensures that only arguments which match
// the mapContainsKey signature will be provided to the function.
m := args[0].(traits.Mapper)
// CEL has many interfaces for dealing with different type abstractions.
// The traits.Mapper interface unifies field presence testing on proto
// messages and maps.
key := args[1]
v, found := m.Find(key)
// If not found and the value was non-nil, the value is an error per the
// `Find` contract. Propagate it accordingly.
if !found {
if v != nil {
return types.ValOrErr(v, "unsupported key type")
}
// Return CEL False if the key was not found.
return types.False
}
// Otherwise whether the value at the key equals the value provided.
return v.Equal(args[2])
}
// Functions for constructing CEL inputs.
// auth constructs a `google.rpc.context.AttributeContext.Auth` message.
func auth(user string, claims map[string]string) *rpcpb.AttributeContext_Auth {
claimFields := make(map[string]*structpb.Value)
for k, v := range claims {
claimFields[k] = structpb.NewStringValue(v)
}
return &rpcpb.AttributeContext_Auth{
Principal: user,
Claims: &structpb.Struct{Fields: claimFields},
}
}
// request constructs a `google.rpc.context.AttributeContext.Request` message.
func request(auth *rpcpb.AttributeContext_Auth, t time.Time) map[string]any {
req := &rpcpb.AttributeContext_Request{
Auth: auth,
Time: &tpb.Timestamp{Seconds: t.Unix()},
}
return map[string]any{"request": req}
}
// valueToJSON converts the CEL type to a protobuf JSON representation and
// marshals the result to a string.
func valueToJSON(val ref.Val) string {
v, err := val.ConvertToNative(reflect.TypeOf(&structpb.Value{}))
if err != nil {
glog.Exit(err)
}
marshaller := protojson.MarshalOptions{Indent: " "}
bytes, err := marshaller.Marshal(v.(proto.Message))
if err != nil {
glog.Exit(err)
}
return string(bytes)
}
var (
emptyClaims = make(map[string]string)
)
|