1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package types
import (
"fmt"
"math"
"reflect"
"strconv"
"time"
"github.com/google/cel-go/common/types/ref"
anypb "google.golang.org/protobuf/types/known/anypb"
structpb "google.golang.org/protobuf/types/known/structpb"
wrapperspb "google.golang.org/protobuf/types/known/wrapperspb"
)
// Int type that implements ref.Val as well as comparison and math operators.
type Int int64
// Int constants used for comparison results.
const (
// IntZero is the zero-value for Int
IntZero = Int(0)
IntOne = Int(1)
IntNegOne = Int(-1)
)
var (
// int32WrapperType reflected type for protobuf int32 wrapper type.
int32WrapperType = reflect.TypeOf(&wrapperspb.Int32Value{})
// int64WrapperType reflected type for protobuf int64 wrapper type.
int64WrapperType = reflect.TypeOf(&wrapperspb.Int64Value{})
)
// Add implements traits.Adder.Add.
func (i Int) Add(other ref.Val) ref.Val {
otherInt, ok := other.(Int)
if !ok {
return MaybeNoSuchOverloadErr(other)
}
val, err := addInt64Checked(int64(i), int64(otherInt))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Compare implements traits.Comparer.Compare.
func (i Int) Compare(other ref.Val) ref.Val {
switch ov := other.(type) {
case Double:
if math.IsNaN(float64(ov)) {
return NewErr("NaN values cannot be ordered")
}
return compareIntDouble(i, ov)
case Int:
return compareInt(i, ov)
case Uint:
return compareIntUint(i, ov)
default:
return MaybeNoSuchOverloadErr(other)
}
}
// ConvertToNative implements ref.Val.ConvertToNative.
func (i Int) ConvertToNative(typeDesc reflect.Type) (any, error) {
switch typeDesc.Kind() {
case reflect.Int, reflect.Int32:
// Enums are also mapped as int32 derivations.
// Note, the code doesn't convert to the enum value directly since this is not known, but
// the net effect with respect to proto-assignment is handled correctly by the reflection
// Convert method.
v, err := int64ToInt32Checked(int64(i))
if err != nil {
return nil, err
}
return reflect.ValueOf(v).Convert(typeDesc).Interface(), nil
case reflect.Int64:
return reflect.ValueOf(i).Convert(typeDesc).Interface(), nil
case reflect.Ptr:
switch typeDesc {
case anyValueType:
// Primitives must be wrapped before being set on an Any field.
return anypb.New(wrapperspb.Int64(int64(i)))
case int32WrapperType:
// Convert the value to a wrapperspb.Int32Value, error on overflow.
v, err := int64ToInt32Checked(int64(i))
if err != nil {
return nil, err
}
return wrapperspb.Int32(v), nil
case int64WrapperType:
// Convert the value to a wrapperspb.Int64Value.
return wrapperspb.Int64(int64(i)), nil
case jsonValueType:
// The proto-to-JSON conversion rules would convert all 64-bit integer values to JSON
// decimal strings. Because CEL ints might come from the automatic widening of 32-bit
// values in protos, the JSON type is chosen dynamically based on the value.
//
// - Integers -2^53-1 < n < 2^53-1 are encoded as JSON numbers.
// - Integers outside this range are encoded as JSON strings.
//
// The integer to float range represents the largest interval where such a conversion
// can round-trip accurately. Thus, conversions from a 32-bit source can expect a JSON
// number as with protobuf. Those consuming JSON from a 64-bit source must be able to
// handle either a JSON number or a JSON decimal string. To handle these cases safely
// the string values must be explicitly converted to int() within a CEL expression;
// however, it is best to simply stay within the JSON number range when building JSON
// objects in CEL.
if i.isJSONSafe() {
return structpb.NewNumberValue(float64(i)), nil
}
// Proto3 to JSON conversion requires string-formatted int64 values
// since the conversion to floating point would result in truncation.
return structpb.NewStringValue(strconv.FormatInt(int64(i), 10)), nil
}
switch typeDesc.Elem().Kind() {
case reflect.Int32:
// Convert the value to a wrapperspb.Int32Value, error on overflow.
v, err := int64ToInt32Checked(int64(i))
if err != nil {
return nil, err
}
p := reflect.New(typeDesc.Elem())
p.Elem().Set(reflect.ValueOf(v).Convert(typeDesc.Elem()))
return p.Interface(), nil
case reflect.Int64:
v := int64(i)
p := reflect.New(typeDesc.Elem())
p.Elem().Set(reflect.ValueOf(v).Convert(typeDesc.Elem()))
return p.Interface(), nil
}
case reflect.Interface:
iv := i.Value()
if reflect.TypeOf(iv).Implements(typeDesc) {
return iv, nil
}
if reflect.TypeOf(i).Implements(typeDesc) {
return i, nil
}
}
return nil, fmt.Errorf("unsupported type conversion from 'int' to %v", typeDesc)
}
// ConvertToType implements ref.Val.ConvertToType.
func (i Int) ConvertToType(typeVal ref.Type) ref.Val {
switch typeVal {
case IntType:
return i
case UintType:
u, err := int64ToUint64Checked(int64(i))
if err != nil {
return WrapErr(err)
}
return Uint(u)
case DoubleType:
return Double(i)
case StringType:
return String(fmt.Sprintf("%d", int64(i)))
case TimestampType:
// The maximum positive value that can be passed to time.Unix is math.MaxInt64 minus the number
// of seconds between year 1 and year 1970. See comments on unixToInternal.
if int64(i) < minUnixTime || int64(i) > maxUnixTime {
return celErrTimestampOverflow
}
return timestampOf(time.Unix(int64(i), 0).UTC())
case TypeType:
return IntType
}
return NewErr("type conversion error from '%s' to '%s'", IntType, typeVal)
}
// Divide implements traits.Divider.Divide.
func (i Int) Divide(other ref.Val) ref.Val {
otherInt, ok := other.(Int)
if !ok {
return MaybeNoSuchOverloadErr(other)
}
val, err := divideInt64Checked(int64(i), int64(otherInt))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Equal implements ref.Val.Equal.
func (i Int) Equal(other ref.Val) ref.Val {
switch ov := other.(type) {
case Double:
if math.IsNaN(float64(ov)) {
return False
}
return Bool(compareIntDouble(i, ov) == 0)
case Int:
return Bool(i == ov)
case Uint:
return Bool(compareIntUint(i, ov) == 0)
default:
return False
}
}
// IsZeroValue returns true if integer is equal to 0
func (i Int) IsZeroValue() bool {
return i == IntZero
}
// Modulo implements traits.Modder.Modulo.
func (i Int) Modulo(other ref.Val) ref.Val {
otherInt, ok := other.(Int)
if !ok {
return MaybeNoSuchOverloadErr(other)
}
val, err := moduloInt64Checked(int64(i), int64(otherInt))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Multiply implements traits.Multiplier.Multiply.
func (i Int) Multiply(other ref.Val) ref.Val {
otherInt, ok := other.(Int)
if !ok {
return MaybeNoSuchOverloadErr(other)
}
val, err := multiplyInt64Checked(int64(i), int64(otherInt))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Negate implements traits.Negater.Negate.
func (i Int) Negate() ref.Val {
val, err := negateInt64Checked(int64(i))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Subtract implements traits.Subtractor.Subtract.
func (i Int) Subtract(subtrahend ref.Val) ref.Val {
subtraInt, ok := subtrahend.(Int)
if !ok {
return MaybeNoSuchOverloadErr(subtrahend)
}
val, err := subtractInt64Checked(int64(i), int64(subtraInt))
if err != nil {
return WrapErr(err)
}
return Int(val)
}
// Type implements ref.Val.Type.
func (i Int) Type() ref.Type {
return IntType
}
// Value implements ref.Val.Value.
func (i Int) Value() any {
return int64(i)
}
// isJSONSafe indicates whether the int is safely representable as a floating point value in JSON.
func (i Int) isJSONSafe() bool {
return i >= minIntJSON && i <= maxIntJSON
}
const (
// maxIntJSON is defined as the Number.MAX_SAFE_INTEGER value per EcmaScript 6.
maxIntJSON = 1<<53 - 1
// minIntJSON is defined as the Number.MIN_SAFE_INTEGER value per EcmaScript 6.
minIntJSON = -maxIntJSON
)
|