1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
|
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"fmt"
"strings"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// AttributeFactory provides methods creating Attribute and Qualifier values.
type AttributeFactory interface {
// AbsoluteAttribute creates an attribute that refers to a top-level variable name.
//
// Checked expressions generate absolute attribute with a single name.
// Parse-only expressions may have more than one possible absolute identifier when the
// expression is created within a container, e.g. package or namespace.
//
// When there is more than one name supplied to the AbsoluteAttribute call, the names
// must be in CEL's namespace resolution order. The name arguments provided here are
// returned in the same order as they were provided by the NamespacedAttribute
// CandidateVariableNames method.
AbsoluteAttribute(id int64, names ...string) NamespacedAttribute
// ConditionalAttribute creates an attribute with two Attribute branches, where the Attribute
// that is resolved depends on the boolean evaluation of the input 'expr'.
ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute
// MaybeAttribute creates an attribute that refers to either a field selection or a namespaced
// variable name.
//
// Only expressions which have not been type-checked may generate oneof attributes.
MaybeAttribute(id int64, name string) Attribute
// RelativeAttribute creates an attribute whose value is a qualification of a dynamic
// computation rather than a static variable reference.
RelativeAttribute(id int64, operand Interpretable) Attribute
// NewQualifier creates a qualifier on the target object with a given value.
//
// The 'val' may be an Attribute or any proto-supported map key type: bool, int, string, uint.
//
// The qualifier may consider the object type being qualified, if present. If absent, the
// qualification should be considered dynamic and the qualification should still work, though
// it may be sub-optimal.
NewQualifier(objType *types.Type, qualID int64, val any, opt bool) (Qualifier, error)
}
// Qualifier marker interface for designating different qualifier values and where they appear
// within field selections and index call expressions (`_[_]`).
type Qualifier interface {
// ID where the qualifier appears within an expression.
ID() int64
// IsOptional specifies whether the qualifier is optional.
// Instead of a direct qualification, an optional qualifier will be resolved via QualifyIfPresent
// rather than Qualify. A non-optional qualifier may also be resolved through QualifyIfPresent if
// the object to qualify is itself optional.
IsOptional() bool
// Qualify performs a qualification, e.g. field selection, on the input object and returns
// the value of the access and whether the value was set. A non-nil value with a false presence
// test result indicates that the value being returned is the default value.
Qualify(vars Activation, obj any) (any, error)
// QualifyIfPresent qualifies the object if the qualifier is declared or defined on the object.
// The 'presenceOnly' flag indicates that the value is not necessary, just a boolean status as
// to whether the qualifier is present.
QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error)
}
// ConstantQualifier interface embeds the Qualifier interface and provides an option to inspect the
// qualifier's constant value.
//
// Non-constant qualifiers are of Attribute type.
type ConstantQualifier interface {
Qualifier
// Value returns the constant value associated with the qualifier.
Value() ref.Val
}
// Attribute values are a variable or value with an optional set of qualifiers, such as field, key,
// or index accesses.
type Attribute interface {
Qualifier
// AddQualifier adds a qualifier on the Attribute or error if the qualification is not a valid qualifier type.
AddQualifier(Qualifier) (Attribute, error)
// Resolve returns the value of the Attribute and whether it was present given an Activation.
// For objects which support safe traversal, the value may be non-nil and the presence flag be false.
//
// If an error is encountered during attribute resolution, it will be returned immediately.
// If the attribute cannot be resolved within the Activation, the result must be: `nil`, `error`
// with the error indicating which variable was missing.
Resolve(Activation) (any, error)
}
// NamespacedAttribute values are a variable within a namespace, and an optional set of qualifiers
// such as field, key, or index accesses.
type NamespacedAttribute interface {
Attribute
// CandidateVariableNames returns the possible namespaced variable names for this Attribute in
// the CEL namespace resolution order.
CandidateVariableNames() []string
// Qualifiers returns the list of qualifiers associated with the Attribute.
Qualifiers() []Qualifier
}
// NewAttributeFactory returns a default AttributeFactory which is produces Attribute values
// capable of resolving types by simple names and qualify the values using the supported qualifier
// types: bool, int, string, and uint.
func NewAttributeFactory(cont *containers.Container, a types.Adapter, p types.Provider) AttributeFactory {
return &attrFactory{
container: cont,
adapter: a,
provider: p,
}
}
type attrFactory struct {
container *containers.Container
adapter types.Adapter
provider types.Provider
}
// AbsoluteAttribute refers to a variable value and an optional qualifier path.
//
// The namespaceNames represent the names the variable could have based on namespace
// resolution rules.
func (r *attrFactory) AbsoluteAttribute(id int64, names ...string) NamespacedAttribute {
return &absoluteAttribute{
id: id,
namespaceNames: names,
qualifiers: []Qualifier{},
adapter: r.adapter,
provider: r.provider,
fac: r,
}
}
// ConditionalAttribute supports the case where an attribute selection may occur on a conditional
// expression, e.g. (cond ? a : b).c
func (r *attrFactory) ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute {
return &conditionalAttribute{
id: id,
expr: expr,
truthy: t,
falsy: f,
adapter: r.adapter,
fac: r,
}
}
// MaybeAttribute collects variants of unchecked AbsoluteAttribute values which could either be
// direct variable accesses or some combination of variable access with qualification.
func (r *attrFactory) MaybeAttribute(id int64, name string) Attribute {
return &maybeAttribute{
id: id,
attrs: []NamespacedAttribute{
r.AbsoluteAttribute(id, r.container.ResolveCandidateNames(name)...),
},
adapter: r.adapter,
provider: r.provider,
fac: r,
}
}
// RelativeAttribute refers to an expression and an optional qualifier path.
func (r *attrFactory) RelativeAttribute(id int64, operand Interpretable) Attribute {
return &relativeAttribute{
id: id,
operand: operand,
qualifiers: []Qualifier{},
adapter: r.adapter,
fac: r,
}
}
// NewQualifier is an implementation of the AttributeFactory interface.
func (r *attrFactory) NewQualifier(objType *types.Type, qualID int64, val any, opt bool) (Qualifier, error) {
// Before creating a new qualifier check to see if this is a protobuf message field access.
// If so, use the precomputed GetFrom qualification method rather than the standard
// stringQualifier.
str, isStr := val.(string)
if isStr && objType != nil && objType.Kind() == types.StructKind {
ft, found := r.provider.FindStructFieldType(objType.TypeName(), str)
if found && ft.IsSet != nil && ft.GetFrom != nil {
return &fieldQualifier{
id: qualID,
Name: str,
FieldType: ft,
adapter: r.adapter,
optional: opt,
}, nil
}
}
return newQualifier(r.adapter, qualID, val, opt)
}
type absoluteAttribute struct {
id int64
// namespaceNames represent the names the variable could have based on declared container
// (package) of the expression.
namespaceNames []string
qualifiers []Qualifier
adapter types.Adapter
provider types.Provider
fac AttributeFactory
}
// ID implements the Attribute interface method.
func (a *absoluteAttribute) ID() int64 {
qualCount := len(a.qualifiers)
if qualCount == 0 {
return a.id
}
return a.qualifiers[qualCount-1].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *absoluteAttribute) IsOptional() bool {
return false
}
// AddQualifier implements the Attribute interface method.
func (a *absoluteAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
a.qualifiers = append(a.qualifiers, qual)
return a, nil
}
// CandidateVariableNames implements the NamespaceAttribute interface method.
func (a *absoluteAttribute) CandidateVariableNames() []string {
return a.namespaceNames
}
// Qualifiers returns the list of Qualifier instances associated with the namespaced attribute.
func (a *absoluteAttribute) Qualifiers() []Qualifier {
return a.qualifiers
}
// Qualify is an implementation of the Qualifier interface method.
func (a *absoluteAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *absoluteAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// String implements the Stringer interface method.
func (a *absoluteAttribute) String() string {
return fmt.Sprintf("id: %v, names: %v", a.id, a.namespaceNames)
}
// Resolve returns the resolved Attribute value given the Activation, or error if the Attribute
// variable is not found, or if its Qualifiers cannot be applied successfully.
//
// If the variable name cannot be found as an Activation variable or in the TypeProvider as
// a type, then the result is `nil`, `error` with the error indicating the name of the first
// variable searched as missing.
func (a *absoluteAttribute) Resolve(vars Activation) (any, error) {
for _, nm := range a.namespaceNames {
// If the variable is found, process it. Otherwise, wait until the checks to
// determine whether the type is unknown before returning.
obj, found := vars.ResolveName(nm)
if found {
obj, isOpt, err := applyQualifiers(vars, obj, a.qualifiers)
if err != nil {
return nil, err
}
if isOpt {
val := a.adapter.NativeToValue(obj)
if types.IsUnknown(val) {
return val, nil
}
return types.OptionalOf(val), nil
}
return obj, nil
}
// Attempt to resolve the qualified type name if the name is not a variable identifier.
typ, found := a.provider.FindIdent(nm)
if found {
if len(a.qualifiers) == 0 {
return typ, nil
}
}
}
var attrNames strings.Builder
for i, nm := range a.namespaceNames {
if i != 0 {
attrNames.WriteString(", ")
}
attrNames.WriteString(nm)
}
return nil, missingAttribute(attrNames.String())
}
type conditionalAttribute struct {
id int64
expr Interpretable
truthy Attribute
falsy Attribute
adapter types.Adapter
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *conditionalAttribute) ID() int64 {
// There's a field access after the conditional.
if a.truthy.ID() == a.falsy.ID() {
return a.truthy.ID()
}
// Otherwise return the conditional id as the consistent id being tracked.
return a.id
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *conditionalAttribute) IsOptional() bool {
return false
}
// AddQualifier appends the same qualifier to both sides of the conditional, in effect managing
// the qualification of alternate attributes.
func (a *conditionalAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
_, err := a.truthy.AddQualifier(qual)
if err != nil {
return nil, err
}
_, err = a.falsy.AddQualifier(qual)
if err != nil {
return nil, err
}
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *conditionalAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *conditionalAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve evaluates the condition, and then resolves the truthy or falsy branch accordingly.
func (a *conditionalAttribute) Resolve(vars Activation) (any, error) {
val := a.expr.Eval(vars)
if val == types.True {
return a.truthy.Resolve(vars)
}
if val == types.False {
return a.falsy.Resolve(vars)
}
if types.IsUnknown(val) {
return val, nil
}
return nil, types.MaybeNoSuchOverloadErr(val).(*types.Err)
}
// String is an implementation of the Stringer interface method.
func (a *conditionalAttribute) String() string {
return fmt.Sprintf("id: %v, truthy attribute: %v, falsy attribute: %v", a.id, a.truthy, a.falsy)
}
type maybeAttribute struct {
id int64
attrs []NamespacedAttribute
adapter types.Adapter
provider types.Provider
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *maybeAttribute) ID() int64 {
return a.attrs[0].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *maybeAttribute) IsOptional() bool {
return false
}
// AddQualifier adds a qualifier to each possible attribute variant, and also creates
// a new namespaced variable from the qualified value.
//
// The algorithm for building the maybe attribute is as follows:
//
// 1. Create a maybe attribute from a simple identifier when it occurs in a parsed-only expression
//
// mb = MaybeAttribute(<id>, "a")
//
// Initializing the maybe attribute creates an absolute attribute internally which includes the
// possible namespaced names of the attribute. In this example, let's assume we are in namespace
// 'ns', then the maybe is either one of the following variable names:
//
// possible variables names -- ns.a, a
//
// 2. Adding a qualifier to the maybe means that the variable name could be a longer qualified
// name, or a field selection on one of the possible variable names produced earlier:
//
// mb.AddQualifier("b")
//
// possible variables names -- ns.a.b, a.b
// possible field selection -- ns.a['b'], a['b']
//
// If none of the attributes within the maybe resolves a value, the result is an error.
func (a *maybeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
str := ""
isStr := false
cq, isConst := qual.(ConstantQualifier)
if isConst {
str, isStr = cq.Value().Value().(string)
}
var augmentedNames []string
// First add the qualifier to all existing attributes in the oneof.
for _, attr := range a.attrs {
if isStr && len(attr.Qualifiers()) == 0 {
candidateVars := attr.CandidateVariableNames()
augmentedNames = make([]string, len(candidateVars))
for i, name := range candidateVars {
augmentedNames[i] = fmt.Sprintf("%s.%s", name, str)
}
}
_, err := attr.AddQualifier(qual)
if err != nil {
return nil, err
}
}
// Next, ensure the most specific variable / type reference is searched first.
if len(augmentedNames) != 0 {
a.attrs = append([]NamespacedAttribute{a.fac.AbsoluteAttribute(qual.ID(), augmentedNames...)}, a.attrs...)
}
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *maybeAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *maybeAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve follows the variable resolution rules to determine whether the attribute is a variable
// or a field selection.
func (a *maybeAttribute) Resolve(vars Activation) (any, error) {
var maybeErr error
for _, attr := range a.attrs {
obj, err := attr.Resolve(vars)
// Return an error if one is encountered.
if err != nil {
resErr, ok := err.(*resolutionError)
if !ok {
return nil, err
}
// If this was not a missing variable error, return it.
if !resErr.isMissingAttribute() {
return nil, err
}
// When the variable is missing in a maybe attribute we defer erroring.
if maybeErr == nil {
maybeErr = resErr
}
// Continue attempting to resolve possible variables.
continue
}
return obj, nil
}
// Else, produce a no such attribute error.
return nil, maybeErr
}
// String is an implementation of the Stringer interface method.
func (a *maybeAttribute) String() string {
return fmt.Sprintf("id: %v, attributes: %v", a.id, a.attrs)
}
type relativeAttribute struct {
id int64
operand Interpretable
qualifiers []Qualifier
adapter types.Adapter
fac AttributeFactory
}
// ID is an implementation of the Attribute interface method.
func (a *relativeAttribute) ID() int64 {
qualCount := len(a.qualifiers)
if qualCount == 0 {
return a.id
}
return a.qualifiers[qualCount-1].ID()
}
// IsOptional returns trivially false for an attribute as the attribute represents a fully
// qualified variable name. If the attribute is used in an optional manner, then an attrQualifier
// is created and marks the attribute as optional.
func (a *relativeAttribute) IsOptional() bool {
return false
}
// AddQualifier implements the Attribute interface method.
func (a *relativeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
a.qualifiers = append(a.qualifiers, qual)
return a, nil
}
// Qualify is an implementation of the Qualifier interface method.
func (a *relativeAttribute) Qualify(vars Activation, obj any) (any, error) {
return attrQualify(a.fac, vars, obj, a)
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (a *relativeAttribute) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return attrQualifyIfPresent(a.fac, vars, obj, a, presenceOnly)
}
// Resolve expression value and qualifier relative to the expression result.
func (a *relativeAttribute) Resolve(vars Activation) (any, error) {
// First, evaluate the operand.
v := a.operand.Eval(vars)
if types.IsError(v) {
return nil, v.(*types.Err)
}
if types.IsUnknown(v) {
return v, nil
}
obj, isOpt, err := applyQualifiers(vars, v, a.qualifiers)
if err != nil {
return nil, err
}
if isOpt {
val := a.adapter.NativeToValue(obj)
if types.IsUnknown(val) {
return val, nil
}
return types.OptionalOf(val), nil
}
return obj, nil
}
// String is an implementation of the Stringer interface method.
func (a *relativeAttribute) String() string {
return fmt.Sprintf("id: %v, operand: %v", a.id, a.operand)
}
func newQualifier(adapter types.Adapter, id int64, v any, opt bool) (Qualifier, error) {
var qual Qualifier
switch val := v.(type) {
case Attribute:
// Note, attributes are initially identified as non-optional since they represent a top-level
// field access; however, when used as a relative qualifier, e.g. a[?b.c], then an attrQualifier
// is created which intercepts the IsOptional check for the attribute in order to return the
// correct result.
return &attrQualifier{
id: id,
Attribute: val,
optional: opt,
}, nil
case string:
qual = &stringQualifier{
id: id,
value: val,
celValue: types.String(val),
adapter: adapter,
optional: opt,
}
case int:
qual = &intQualifier{
id: id, value: int64(val), celValue: types.Int(val), adapter: adapter, optional: opt,
}
case int32:
qual = &intQualifier{
id: id, value: int64(val), celValue: types.Int(val), adapter: adapter, optional: opt,
}
case int64:
qual = &intQualifier{
id: id, value: val, celValue: types.Int(val), adapter: adapter, optional: opt,
}
case uint:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case uint32:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case uint64:
qual = &uintQualifier{
id: id, value: val, celValue: types.Uint(val), adapter: adapter, optional: opt,
}
case bool:
qual = &boolQualifier{
id: id, value: val, celValue: types.Bool(val), adapter: adapter, optional: opt,
}
case float32:
qual = &doubleQualifier{
id: id,
value: float64(val),
celValue: types.Double(val),
adapter: adapter,
optional: opt,
}
case float64:
qual = &doubleQualifier{
id: id, value: val, celValue: types.Double(val), adapter: adapter, optional: opt,
}
case types.String:
qual = &stringQualifier{
id: id, value: string(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Int:
qual = &intQualifier{
id: id, value: int64(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Uint:
qual = &uintQualifier{
id: id, value: uint64(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Bool:
qual = &boolQualifier{
id: id, value: bool(val), celValue: val, adapter: adapter, optional: opt,
}
case types.Double:
qual = &doubleQualifier{
id: id, value: float64(val), celValue: val, adapter: adapter, optional: opt,
}
case *types.Unknown:
qual = &unknownQualifier{id: id, value: val}
default:
if q, ok := v.(Qualifier); ok {
return q, nil
}
return nil, fmt.Errorf("invalid qualifier type: %T", v)
}
return qual, nil
}
type attrQualifier struct {
id int64
Attribute
optional bool
}
// ID implements the Qualifier interface method and returns the qualification instruction id
// rather than the attribute id.
func (q *attrQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *attrQualifier) IsOptional() bool {
return q.optional
}
type stringQualifier struct {
id int64
value string
celValue ref.Val
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *stringQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *stringQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *stringQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *stringQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *stringQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
s := q.value
switch o := obj.(type) {
case map[string]any:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]string:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]int64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]uint64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]float32:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]float64:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
case map[string]bool:
obj, isKey := o[s]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *stringQualifier) Value() ref.Val {
return q.celValue
}
type intQualifier struct {
id int64
value int64
celValue ref.Val
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *intQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *intQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *intQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *intQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *intQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
i := q.value
var isMap bool
switch o := obj.(type) {
// The specialized map types supported by an int qualifier are considerably fewer than the set
// of specialized map types supported by string qualifiers since they are less frequently used
// than string-based map keys. Additional specializations may be added in the future if
// desired.
case map[int]any:
isMap = true
obj, isKey := o[int(i)]
if isKey {
return obj, true, nil
}
case map[int32]any:
isMap = true
obj, isKey := o[int32(i)]
if isKey {
return obj, true, nil
}
case map[int64]any:
isMap = true
obj, isKey := o[i]
if isKey {
return obj, true, nil
}
case []any:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []string:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []int64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []uint64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []float32:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []float64:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
case []bool:
isIndex := i >= 0 && i < int64(len(o))
if isIndex {
return o[i], true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
if isMap {
return nil, false, missingKey(q.celValue)
}
return nil, false, missingIndex(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *intQualifier) Value() ref.Val {
return q.celValue
}
type uintQualifier struct {
id int64
value uint64
celValue ref.Val
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *uintQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *uintQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *uintQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *uintQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *uintQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
u := q.value
switch o := obj.(type) {
// The specialized map types supported by a uint qualifier are considerably fewer than the set
// of specialized map types supported by string qualifiers since they are less frequently used
// than string-based map keys. Additional specializations may be added in the future if
// desired.
case map[uint]any:
obj, isKey := o[uint(u)]
if isKey {
return obj, true, nil
}
case map[uint32]any:
obj, isKey := o[uint32(u)]
if isKey {
return obj, true, nil
}
case map[uint64]any:
obj, isKey := o[u]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *uintQualifier) Value() ref.Val {
return q.celValue
}
type boolQualifier struct {
id int64
value bool
celValue ref.Val
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *boolQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *boolQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *boolQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *boolQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *boolQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
b := q.value
switch o := obj.(type) {
case map[bool]any:
obj, isKey := o[b]
if isKey {
return obj, true, nil
}
default:
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(q.celValue)
}
// Value implements the ConstantQualifier interface
func (q *boolQualifier) Value() ref.Val {
return q.celValue
}
// fieldQualifier indicates that the qualification is a well-defined field with a known
// field type. When the field type is known this can be used to improve the speed and
// efficiency of field resolution.
type fieldQualifier struct {
id int64
Name string
FieldType *types.FieldType
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *fieldQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *fieldQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *fieldQualifier) Qualify(vars Activation, obj any) (any, error) {
if rv, ok := obj.(ref.Val); ok {
obj = rv.Value()
}
val, err := q.FieldType.GetFrom(obj)
if err != nil {
return nil, err
}
return val, nil
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *fieldQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
if rv, ok := obj.(ref.Val); ok {
obj = rv.Value()
}
if !q.FieldType.IsSet(obj) {
return nil, false, nil
}
if presenceOnly {
return nil, true, nil
}
val, err := q.FieldType.GetFrom(obj)
if err != nil {
return nil, false, err
}
return val, true, nil
}
// Value implements the ConstantQualifier interface
func (q *fieldQualifier) Value() ref.Val {
return types.String(q.Name)
}
// doubleQualifier qualifies a CEL object, map, or list using a double value.
//
// This qualifier is used for working with dynamic data like JSON or protobuf.Any where the value
// type may not be known ahead of time and may not conform to the standard types supported as valid
// protobuf map key types.
type doubleQualifier struct {
id int64
value float64
celValue ref.Val
adapter types.Adapter
optional bool
}
// ID is an implementation of the Qualifier interface method.
func (q *doubleQualifier) ID() int64 {
return q.id
}
// IsOptional implements the Qualifier interface method.
func (q *doubleQualifier) IsOptional() bool {
return q.optional
}
// Qualify implements the Qualifier interface method.
func (q *doubleQualifier) Qualify(vars Activation, obj any) (any, error) {
val, _, err := q.qualifyInternal(vars, obj, false, false)
return val, err
}
func (q *doubleQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.qualifyInternal(vars, obj, true, presenceOnly)
}
func (q *doubleQualifier) qualifyInternal(vars Activation, obj any, presenceTest, presenceOnly bool) (any, bool, error) {
return refQualify(q.adapter, obj, q.celValue, presenceTest, presenceOnly)
}
// Value implements the ConstantQualifier interface
func (q *doubleQualifier) Value() ref.Val {
return q.celValue
}
// unknownQualifier is a simple qualifier which always returns a preconfigured set of unknown values
// for any value subject to qualification. This is consistent with CEL's unknown handling elsewhere.
type unknownQualifier struct {
id int64
value *types.Unknown
}
// ID is an implementation of the Qualifier interface method.
func (q *unknownQualifier) ID() int64 {
return q.id
}
// IsOptional returns trivially false as an the unknown value is always returned.
func (q *unknownQualifier) IsOptional() bool {
return false
}
// Qualify returns the unknown value associated with this qualifier.
func (q *unknownQualifier) Qualify(vars Activation, obj any) (any, error) {
return q.value, nil
}
// QualifyIfPresent is an implementation of the Qualifier interface method.
func (q *unknownQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
return q.value, true, nil
}
// Value implements the ConstantQualifier interface
func (q *unknownQualifier) Value() ref.Val {
return q.value
}
func applyQualifiers(vars Activation, obj any, qualifiers []Qualifier) (any, bool, error) {
optObj, isOpt := obj.(*types.Optional)
if isOpt {
if !optObj.HasValue() {
return optObj, false, nil
}
obj = optObj.GetValue().Value()
}
var err error
for _, qual := range qualifiers {
var qualObj any
isOpt = isOpt || qual.IsOptional()
if isOpt {
var present bool
qualObj, present, err = qual.QualifyIfPresent(vars, obj, false)
if err != nil {
return nil, false, err
}
if !present {
// We return optional none here with a presence of 'false' as the layers
// above will attempt to call types.OptionalOf() on a present value if any
// of the qualifiers is optional.
return types.OptionalNone, false, nil
}
} else {
qualObj, err = qual.Qualify(vars, obj)
if err != nil {
return nil, false, err
}
}
obj = qualObj
}
return obj, isOpt, nil
}
// attrQualify performs a qualification using the result of an attribute evaluation.
func attrQualify(fac AttributeFactory, vars Activation, obj any, qualAttr Attribute) (any, error) {
val, err := qualAttr.Resolve(vars)
if err != nil {
return nil, err
}
qual, err := fac.NewQualifier(nil, qualAttr.ID(), val, qualAttr.IsOptional())
if err != nil {
return nil, err
}
return qual.Qualify(vars, obj)
}
// attrQualifyIfPresent conditionally performs the qualification of the result of attribute is present
// on the target object.
func attrQualifyIfPresent(fac AttributeFactory, vars Activation, obj any, qualAttr Attribute,
presenceOnly bool) (any, bool, error) {
val, err := qualAttr.Resolve(vars)
if err != nil {
return nil, false, err
}
qual, err := fac.NewQualifier(nil, qualAttr.ID(), val, qualAttr.IsOptional())
if err != nil {
return nil, false, err
}
return qual.QualifyIfPresent(vars, obj, presenceOnly)
}
// refQualify attempts to convert the value to a CEL value and then uses reflection methods to try and
// apply the qualifier with the option to presence test field accesses before retrieving field values.
func refQualify(adapter types.Adapter, obj any, idx ref.Val, presenceTest, presenceOnly bool) (ref.Val, bool, error) {
celVal := adapter.NativeToValue(obj)
switch v := celVal.(type) {
case *types.Unknown:
return v, true, nil
case *types.Err:
return nil, false, v
case traits.Mapper:
val, found := v.Find(idx)
// If the index is of the wrong type for the map, then it is possible
// for the Find call to produce an error.
if types.IsError(val) {
return nil, false, val.(*types.Err)
}
if found {
return val, true, nil
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(idx)
case traits.Lister:
// If the index argument is not a valid numeric type, then it is possible
// for the index operation to produce an error.
i, err := types.IndexOrError(idx)
if err != nil {
return nil, false, err
}
celIndex := types.Int(i)
if i >= 0 && celIndex < v.Size().(types.Int) {
return v.Get(idx), true, nil
}
if presenceTest {
return nil, false, nil
}
return nil, false, missingIndex(idx)
case traits.Indexer:
if presenceTest {
ft, ok := v.(traits.FieldTester)
if ok {
presence := ft.IsSet(idx)
if types.IsError(presence) {
return nil, false, presence.(*types.Err)
}
// If not found or presence only test, then return.
// Otherwise, if found, obtain the value later on.
if presenceOnly || presence == types.False {
return nil, presence == types.True, nil
}
}
}
val := v.Get(idx)
if types.IsError(val) {
return nil, false, val.(*types.Err)
}
return val, true, nil
default:
if presenceTest {
return nil, false, nil
}
return nil, false, missingKey(idx)
}
}
// resolutionError is a custom error type which encodes the different error states which may
// occur during attribute resolution.
type resolutionError struct {
missingAttribute string
missingIndex ref.Val
missingKey ref.Val
}
func (e *resolutionError) isMissingAttribute() bool {
return e.missingAttribute != ""
}
func missingIndex(missing ref.Val) *resolutionError {
return &resolutionError{
missingIndex: missing,
}
}
func missingKey(missing ref.Val) *resolutionError {
return &resolutionError{
missingKey: missing,
}
}
func missingAttribute(attr string) *resolutionError {
return &resolutionError{
missingAttribute: attr,
}
}
// Error implements the error interface method.
func (e *resolutionError) Error() string {
if e.missingKey != nil {
return fmt.Sprintf("no such key: %v", e.missingKey)
}
if e.missingIndex != nil {
return fmt.Sprintf("index out of bounds: %v", e.missingIndex)
}
if e.missingAttribute != "" {
return fmt.Sprintf("no such attribute(s): %s", e.missingAttribute)
}
return "invalid attribute"
}
// Is implements the errors.Is() method used by more recent versions of Go.
func (e *resolutionError) Is(err error) bool {
return err.Error() == e.Error()
}
|