1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
|
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"fmt"
"github.com/google/cel-go/common/functions"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// Interpretable can accept a given Activation and produce a value along with
// an accompanying EvalState which can be used to inspect whether additional
// data might be necessary to complete the evaluation.
type Interpretable interface {
// ID value corresponding to the expression node.
ID() int64
// Eval an Activation to produce an output.
Eval(activation Activation) ref.Val
}
// InterpretableConst interface for tracking whether the Interpretable is a constant value.
type InterpretableConst interface {
Interpretable
// Value returns the constant value of the instruction.
Value() ref.Val
}
// InterpretableAttribute interface for tracking whether the Interpretable is an attribute.
type InterpretableAttribute interface {
Interpretable
// Attr returns the Attribute value.
Attr() Attribute
// Adapter returns the type adapter to be used for adapting resolved Attribute values.
Adapter() types.Adapter
// AddQualifier proxies the Attribute.AddQualifier method.
//
// Note, this method may mutate the current attribute state. If the desire is to clone the
// Attribute, the Attribute should first be copied before adding the qualifier. Attributes
// are not copyable by default, so this is a capable that would need to be added to the
// AttributeFactory or specifically to the underlying Attribute implementation.
AddQualifier(Qualifier) (Attribute, error)
// Qualify replicates the Attribute.Qualify method to permit extension and interception
// of object qualification.
Qualify(vars Activation, obj any) (any, error)
// QualifyIfPresent qualifies the object if the qualifier is declared or defined on the object.
// The 'presenceOnly' flag indicates that the value is not necessary, just a boolean status as
// to whether the qualifier is present.
QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error)
// IsOptional indicates whether the resulting value is an optional type.
IsOptional() bool
// Resolve returns the value of the Attribute given the current Activation.
Resolve(Activation) (any, error)
}
// InterpretableCall interface for inspecting Interpretable instructions related to function calls.
type InterpretableCall interface {
Interpretable
// Function returns the function name as it appears in text or mangled operator name as it
// appears in the operators.go file.
Function() string
// OverloadID returns the overload id associated with the function specialization.
// Overload ids are stable across language boundaries and can be treated as synonymous with a
// unique function signature.
OverloadID() string
// Args returns the normalized arguments to the function overload.
// For receiver-style functions, the receiver target is arg 0.
Args() []Interpretable
}
// InterpretableConstructor interface for inspecting Interpretable instructions that initialize a list, map
// or struct.
type InterpretableConstructor interface {
Interpretable
// InitVals returns all the list elements, map key and values or struct field values.
InitVals() []Interpretable
// Type returns the type constructed.
Type() ref.Type
}
// Core Interpretable implementations used during the program planning phase.
type evalTestOnly struct {
id int64
InterpretableAttribute
}
// ID implements the Interpretable interface method.
func (test *evalTestOnly) ID() int64 {
return test.id
}
// Eval implements the Interpretable interface method.
func (test *evalTestOnly) Eval(ctx Activation) ref.Val {
val, err := test.Resolve(ctx)
// Return an error if the resolve step fails
if err != nil {
return types.WrapErr(err)
}
if optVal, isOpt := val.(*types.Optional); isOpt {
return types.Bool(optVal.HasValue())
}
return test.Adapter().NativeToValue(val)
}
// AddQualifier appends a qualifier that will always and only perform a presence test.
func (test *evalTestOnly) AddQualifier(q Qualifier) (Attribute, error) {
cq, ok := q.(ConstantQualifier)
if !ok {
return nil, fmt.Errorf("test only expressions must have constant qualifiers: %v", q)
}
return test.InterpretableAttribute.AddQualifier(&testOnlyQualifier{ConstantQualifier: cq})
}
type testOnlyQualifier struct {
ConstantQualifier
}
// Qualify determines whether the test-only qualifier is present on the input object.
func (q *testOnlyQualifier) Qualify(vars Activation, obj any) (any, error) {
out, present, err := q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
if err != nil {
return nil, err
}
if unk, isUnk := out.(types.Unknown); isUnk {
return unk, nil
}
if opt, isOpt := out.(types.Optional); isOpt {
return opt.HasValue(), nil
}
return present, nil
}
// QualifyIfPresent returns whether the target field in the test-only expression is present.
func (q *testOnlyQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
// Only ever test for presence.
return q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
}
// QualifierValueEquals determines whether the test-only constant qualifier equals the input value.
func (q *testOnlyQualifier) QualifierValueEquals(value any) bool {
// The input qualifier will always be of type string
return q.ConstantQualifier.Value().Value() == value
}
// NewConstValue creates a new constant valued Interpretable.
func NewConstValue(id int64, val ref.Val) InterpretableConst {
return &evalConst{
id: id,
val: val,
}
}
type evalConst struct {
id int64
val ref.Val
}
// ID implements the Interpretable interface method.
func (cons *evalConst) ID() int64 {
return cons.id
}
// Eval implements the Interpretable interface method.
func (cons *evalConst) Eval(ctx Activation) ref.Val {
return cons.val
}
// Value implements the InterpretableConst interface method.
func (cons *evalConst) Value() ref.Val {
return cons.val
}
type evalOr struct {
id int64
terms []Interpretable
}
// ID implements the Interpretable interface method.
func (or *evalOr) ID() int64 {
return or.id
}
// Eval implements the Interpretable interface method.
func (or *evalOr) Eval(ctx Activation) ref.Val {
var err ref.Val = nil
var unk *types.Unknown
for _, term := range or.terms {
val := term.Eval(ctx)
boolVal, ok := val.(types.Bool)
// short-circuit on true.
if ok && boolVal == types.True {
return types.True
}
if !ok {
isUnk := false
unk, isUnk = types.MaybeMergeUnknowns(val, unk)
if !isUnk && err == nil {
if types.IsError(val) {
err = val
} else {
err = types.MaybeNoSuchOverloadErr(val)
}
}
}
}
if unk != nil {
return unk
}
if err != nil {
return err
}
return types.False
}
type evalAnd struct {
id int64
terms []Interpretable
}
// ID implements the Interpretable interface method.
func (and *evalAnd) ID() int64 {
return and.id
}
// Eval implements the Interpretable interface method.
func (and *evalAnd) Eval(ctx Activation) ref.Val {
var err ref.Val = nil
var unk *types.Unknown
for _, term := range and.terms {
val := term.Eval(ctx)
boolVal, ok := val.(types.Bool)
// short-circuit on false.
if ok && boolVal == types.False {
return types.False
}
if !ok {
isUnk := false
unk, isUnk = types.MaybeMergeUnknowns(val, unk)
if !isUnk && err == nil {
if types.IsError(val) {
err = val
} else {
err = types.MaybeNoSuchOverloadErr(val)
}
}
}
}
if unk != nil {
return unk
}
if err != nil {
return err
}
return types.True
}
type evalEq struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (eq *evalEq) ID() int64 {
return eq.id
}
// Eval implements the Interpretable interface method.
func (eq *evalEq) Eval(ctx Activation) ref.Val {
lVal := eq.lhs.Eval(ctx)
rVal := eq.rhs.Eval(ctx)
if types.IsUnknownOrError(lVal) {
return lVal
}
if types.IsUnknownOrError(rVal) {
return rVal
}
return types.Equal(lVal, rVal)
}
// Function implements the InterpretableCall interface method.
func (*evalEq) Function() string {
return operators.Equals
}
// OverloadID implements the InterpretableCall interface method.
func (*evalEq) OverloadID() string {
return overloads.Equals
}
// Args implements the InterpretableCall interface method.
func (eq *evalEq) Args() []Interpretable {
return []Interpretable{eq.lhs, eq.rhs}
}
type evalNe struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (ne *evalNe) ID() int64 {
return ne.id
}
// Eval implements the Interpretable interface method.
func (ne *evalNe) Eval(ctx Activation) ref.Val {
lVal := ne.lhs.Eval(ctx)
rVal := ne.rhs.Eval(ctx)
if types.IsUnknownOrError(lVal) {
return lVal
}
if types.IsUnknownOrError(rVal) {
return rVal
}
return types.Bool(types.Equal(lVal, rVal) != types.True)
}
// Function implements the InterpretableCall interface method.
func (*evalNe) Function() string {
return operators.NotEquals
}
// OverloadID implements the InterpretableCall interface method.
func (*evalNe) OverloadID() string {
return overloads.NotEquals
}
// Args implements the InterpretableCall interface method.
func (ne *evalNe) Args() []Interpretable {
return []Interpretable{ne.lhs, ne.rhs}
}
type evalZeroArity struct {
id int64
function string
overload string
impl functions.FunctionOp
}
// ID implements the Interpretable interface method.
func (zero *evalZeroArity) ID() int64 {
return zero.id
}
// Eval implements the Interpretable interface method.
func (zero *evalZeroArity) Eval(ctx Activation) ref.Val {
return zero.impl()
}
// Function implements the InterpretableCall interface method.
func (zero *evalZeroArity) Function() string {
return zero.function
}
// OverloadID implements the InterpretableCall interface method.
func (zero *evalZeroArity) OverloadID() string {
return zero.overload
}
// Args returns the argument to the unary function.
func (zero *evalZeroArity) Args() []Interpretable {
return []Interpretable{}
}
type evalUnary struct {
id int64
function string
overload string
arg Interpretable
trait int
impl functions.UnaryOp
nonStrict bool
}
// ID implements the Interpretable interface method.
func (un *evalUnary) ID() int64 {
return un.id
}
// Eval implements the Interpretable interface method.
func (un *evalUnary) Eval(ctx Activation) ref.Val {
argVal := un.arg.Eval(ctx)
// Early return if the argument to the function is unknown or error.
strict := !un.nonStrict
if strict && types.IsUnknownOrError(argVal) {
return argVal
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
if un.impl != nil && (un.trait == 0 || (!strict && types.IsUnknownOrError(argVal)) || argVal.Type().HasTrait(un.trait)) {
return un.impl(argVal)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if argVal.Type().HasTrait(traits.ReceiverType) {
return argVal.(traits.Receiver).Receive(un.function, un.overload, []ref.Val{})
}
return types.NewErr("no such overload: %s", un.function)
}
// Function implements the InterpretableCall interface method.
func (un *evalUnary) Function() string {
return un.function
}
// OverloadID implements the InterpretableCall interface method.
func (un *evalUnary) OverloadID() string {
return un.overload
}
// Args returns the argument to the unary function.
func (un *evalUnary) Args() []Interpretable {
return []Interpretable{un.arg}
}
type evalBinary struct {
id int64
function string
overload string
lhs Interpretable
rhs Interpretable
trait int
impl functions.BinaryOp
nonStrict bool
}
// ID implements the Interpretable interface method.
func (bin *evalBinary) ID() int64 {
return bin.id
}
// Eval implements the Interpretable interface method.
func (bin *evalBinary) Eval(ctx Activation) ref.Val {
lVal := bin.lhs.Eval(ctx)
rVal := bin.rhs.Eval(ctx)
// Early return if any argument to the function is unknown or error.
strict := !bin.nonStrict
if strict {
if types.IsUnknownOrError(lVal) {
return lVal
}
if types.IsUnknownOrError(rVal) {
return rVal
}
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
if bin.impl != nil && (bin.trait == 0 || (!strict && types.IsUnknownOrError(lVal)) || lVal.Type().HasTrait(bin.trait)) {
return bin.impl(lVal, rVal)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if lVal.Type().HasTrait(traits.ReceiverType) {
return lVal.(traits.Receiver).Receive(bin.function, bin.overload, []ref.Val{rVal})
}
return types.NewErr("no such overload: %s", bin.function)
}
// Function implements the InterpretableCall interface method.
func (bin *evalBinary) Function() string {
return bin.function
}
// OverloadID implements the InterpretableCall interface method.
func (bin *evalBinary) OverloadID() string {
return bin.overload
}
// Args returns the argument to the unary function.
func (bin *evalBinary) Args() []Interpretable {
return []Interpretable{bin.lhs, bin.rhs}
}
type evalVarArgs struct {
id int64
function string
overload string
args []Interpretable
trait int
impl functions.FunctionOp
nonStrict bool
}
// NewCall creates a new call Interpretable.
func NewCall(id int64, function, overload string, args []Interpretable, impl functions.FunctionOp) InterpretableCall {
return &evalVarArgs{
id: id,
function: function,
overload: overload,
args: args,
impl: impl,
}
}
// ID implements the Interpretable interface method.
func (fn *evalVarArgs) ID() int64 {
return fn.id
}
// Eval implements the Interpretable interface method.
func (fn *evalVarArgs) Eval(ctx Activation) ref.Val {
argVals := make([]ref.Val, len(fn.args))
// Early return if any argument to the function is unknown or error.
strict := !fn.nonStrict
for i, arg := range fn.args {
argVals[i] = arg.Eval(ctx)
if strict && types.IsUnknownOrError(argVals[i]) {
return argVals[i]
}
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
arg0 := argVals[0]
if fn.impl != nil && (fn.trait == 0 || (!strict && types.IsUnknownOrError(arg0)) || arg0.Type().HasTrait(fn.trait)) {
return fn.impl(argVals...)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if arg0.Type().HasTrait(traits.ReceiverType) {
return arg0.(traits.Receiver).Receive(fn.function, fn.overload, argVals[1:])
}
return types.NewErr("no such overload: %s", fn.function)
}
// Function implements the InterpretableCall interface method.
func (fn *evalVarArgs) Function() string {
return fn.function
}
// OverloadID implements the InterpretableCall interface method.
func (fn *evalVarArgs) OverloadID() string {
return fn.overload
}
// Args returns the argument to the unary function.
func (fn *evalVarArgs) Args() []Interpretable {
return fn.args
}
type evalList struct {
id int64
elems []Interpretable
optionals []bool
hasOptionals bool
adapter types.Adapter
}
// ID implements the Interpretable interface method.
func (l *evalList) ID() int64 {
return l.id
}
// Eval implements the Interpretable interface method.
func (l *evalList) Eval(ctx Activation) ref.Val {
elemVals := make([]ref.Val, 0, len(l.elems))
// If any argument is unknown or error early terminate.
for i, elem := range l.elems {
elemVal := elem.Eval(ctx)
if types.IsUnknownOrError(elemVal) {
return elemVal
}
if l.hasOptionals && l.optionals[i] {
optVal, ok := elemVal.(*types.Optional)
if !ok {
return invalidOptionalElementInit(elemVal)
}
if !optVal.HasValue() {
continue
}
elemVal = optVal.GetValue()
}
elemVals = append(elemVals, elemVal)
}
return l.adapter.NativeToValue(elemVals)
}
func (l *evalList) InitVals() []Interpretable {
return l.elems
}
func (l *evalList) Type() ref.Type {
return types.ListType
}
type evalMap struct {
id int64
keys []Interpretable
vals []Interpretable
optionals []bool
hasOptionals bool
adapter types.Adapter
}
// ID implements the Interpretable interface method.
func (m *evalMap) ID() int64 {
return m.id
}
// Eval implements the Interpretable interface method.
func (m *evalMap) Eval(ctx Activation) ref.Val {
entries := make(map[ref.Val]ref.Val)
// If any argument is unknown or error early terminate.
for i, key := range m.keys {
keyVal := key.Eval(ctx)
if types.IsUnknownOrError(keyVal) {
return keyVal
}
valVal := m.vals[i].Eval(ctx)
if types.IsUnknownOrError(valVal) {
return valVal
}
if m.hasOptionals && m.optionals[i] {
optVal, ok := valVal.(*types.Optional)
if !ok {
return invalidOptionalEntryInit(keyVal, valVal)
}
if !optVal.HasValue() {
delete(entries, keyVal)
continue
}
valVal = optVal.GetValue()
}
entries[keyVal] = valVal
}
return m.adapter.NativeToValue(entries)
}
func (m *evalMap) InitVals() []Interpretable {
if len(m.keys) != len(m.vals) {
return nil
}
result := make([]Interpretable, len(m.keys)+len(m.vals))
idx := 0
for i, k := range m.keys {
v := m.vals[i]
result[idx] = k
idx++
result[idx] = v
idx++
}
return result
}
func (m *evalMap) Type() ref.Type {
return types.MapType
}
type evalObj struct {
id int64
typeName string
fields []string
vals []Interpretable
optionals []bool
hasOptionals bool
provider types.Provider
}
// ID implements the Interpretable interface method.
func (o *evalObj) ID() int64 {
return o.id
}
// Eval implements the Interpretable interface method.
func (o *evalObj) Eval(ctx Activation) ref.Val {
fieldVals := make(map[string]ref.Val)
// If any argument is unknown or error early terminate.
for i, field := range o.fields {
val := o.vals[i].Eval(ctx)
if types.IsUnknownOrError(val) {
return val
}
if o.hasOptionals && o.optionals[i] {
optVal, ok := val.(*types.Optional)
if !ok {
return invalidOptionalEntryInit(field, val)
}
if !optVal.HasValue() {
delete(fieldVals, field)
continue
}
val = optVal.GetValue()
}
fieldVals[field] = val
}
return o.provider.NewValue(o.typeName, fieldVals)
}
func (o *evalObj) InitVals() []Interpretable {
return o.vals
}
func (o *evalObj) Type() ref.Type {
return types.NewObjectTypeValue(o.typeName)
}
type evalFold struct {
id int64
accuVar string
iterVar string
iterRange Interpretable
accu Interpretable
cond Interpretable
step Interpretable
result Interpretable
adapter types.Adapter
exhaustive bool
interruptable bool
}
// ID implements the Interpretable interface method.
func (fold *evalFold) ID() int64 {
return fold.id
}
// Eval implements the Interpretable interface method.
func (fold *evalFold) Eval(ctx Activation) ref.Val {
foldRange := fold.iterRange.Eval(ctx)
if !foldRange.Type().HasTrait(traits.IterableType) {
return types.ValOrErr(foldRange, "got '%T', expected iterable type", foldRange)
}
// Configure the fold activation with the accumulator initial value.
accuCtx := varActivationPool.Get().(*varActivation)
accuCtx.parent = ctx
accuCtx.name = fold.accuVar
accuCtx.val = fold.accu.Eval(ctx)
// If the accumulator starts as an empty list, then the comprehension will build a list
// so create a mutable list to optimize the cost of the inner loop.
l, ok := accuCtx.val.(traits.Lister)
buildingList := false
if !fold.exhaustive && ok && l.Size() == types.IntZero {
buildingList = true
accuCtx.val = types.NewMutableList(fold.adapter)
}
iterCtx := varActivationPool.Get().(*varActivation)
iterCtx.parent = accuCtx
iterCtx.name = fold.iterVar
interrupted := false
it := foldRange.(traits.Iterable).Iterator()
for it.HasNext() == types.True {
// Modify the iter var in the fold activation.
iterCtx.val = it.Next()
// Evaluate the condition, terminate the loop if false.
cond := fold.cond.Eval(iterCtx)
condBool, ok := cond.(types.Bool)
if !fold.exhaustive && ok && condBool != types.True {
break
}
// Evaluate the evaluation step into accu var.
accuCtx.val = fold.step.Eval(iterCtx)
if fold.interruptable {
if stop, found := ctx.ResolveName("#interrupted"); found && stop == true {
interrupted = true
break
}
}
}
varActivationPool.Put(iterCtx)
if interrupted {
varActivationPool.Put(accuCtx)
return types.NewErr("operation interrupted")
}
// Compute the result.
res := fold.result.Eval(accuCtx)
varActivationPool.Put(accuCtx)
// Convert a mutable list to an immutable one, if the comprehension has generated a list as a result.
if !types.IsUnknownOrError(res) && buildingList {
if _, ok := res.(traits.MutableLister); ok {
res = res.(traits.MutableLister).ToImmutableList()
}
}
return res
}
// Optional Interpretable implementations that specialize, subsume, or extend the core evaluation
// plan via decorators.
// evalSetMembership is an Interpretable implementation which tests whether an input value
// exists within the set of map keys used to model a set.
type evalSetMembership struct {
inst Interpretable
arg Interpretable
valueSet map[ref.Val]ref.Val
}
// ID implements the Interpretable interface method.
func (e *evalSetMembership) ID() int64 {
return e.inst.ID()
}
// Eval implements the Interpretable interface method.
func (e *evalSetMembership) Eval(ctx Activation) ref.Val {
val := e.arg.Eval(ctx)
if types.IsUnknownOrError(val) {
return val
}
if ret, found := e.valueSet[val]; found {
return ret
}
return types.False
}
// evalWatch is an Interpretable implementation that wraps the execution of a given
// expression so that it may observe the computed value and send it to an observer.
type evalWatch struct {
Interpretable
observer EvalObserver
}
// Eval implements the Interpretable interface method.
func (e *evalWatch) Eval(ctx Activation) ref.Val {
val := e.Interpretable.Eval(ctx)
e.observer(e.ID(), e.Interpretable, val)
return val
}
// evalWatchAttr describes a watcher of an InterpretableAttribute Interpretable.
//
// Since the watcher may be selected against at a later stage in program planning, the watcher
// must implement the InterpretableAttribute interface by proxy.
type evalWatchAttr struct {
InterpretableAttribute
observer EvalObserver
}
// AddQualifier creates a wrapper over the incoming qualifier which observes the qualification
// result.
func (e *evalWatchAttr) AddQualifier(q Qualifier) (Attribute, error) {
switch qual := q.(type) {
// By default, the qualifier is either a constant or an attribute
// There may be some custom cases where the attribute is neither.
case ConstantQualifier:
// Expose a method to test whether the qualifier matches the input pattern.
q = &evalWatchConstQual{
ConstantQualifier: qual,
observer: e.observer,
adapter: e.Adapter(),
}
case *evalWatchAttr:
// Unwrap the evalWatchAttr since the observation will be applied during Qualify or
// QualifyIfPresent rather than Eval.
q = &evalWatchAttrQual{
Attribute: qual.InterpretableAttribute,
observer: e.observer,
adapter: e.Adapter(),
}
case Attribute:
// Expose methods which intercept the qualification prior to being applied as a qualifier.
// Using this interface ensures that the qualifier is converted to a constant value one
// time during attribute pattern matching as the method embeds the Attribute interface
// needed to trip the conversion to a constant.
q = &evalWatchAttrQual{
Attribute: qual,
observer: e.observer,
adapter: e.Adapter(),
}
default:
// This is likely a custom qualifier type.
q = &evalWatchQual{
Qualifier: qual,
observer: e.observer,
adapter: e.Adapter(),
}
}
_, err := e.InterpretableAttribute.AddQualifier(q)
return e, err
}
// Eval implements the Interpretable interface method.
func (e *evalWatchAttr) Eval(vars Activation) ref.Val {
val := e.InterpretableAttribute.Eval(vars)
e.observer(e.ID(), e.InterpretableAttribute, val)
return val
}
// evalWatchConstQual observes the qualification of an object using a constant boolean, int,
// string, or uint.
type evalWatchConstQual struct {
ConstantQualifier
observer EvalObserver
adapter types.Adapter
}
// Qualify observes the qualification of a object via a constant boolean, int, string, or uint.
func (e *evalWatchConstQual) Qualify(vars Activation, obj any) (any, error) {
out, err := e.ConstantQualifier.Qualify(vars, obj)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else {
val = e.adapter.NativeToValue(out)
}
e.observer(e.ID(), e.ConstantQualifier, val)
return out, err
}
// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchConstQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
out, present, err := e.ConstantQualifier.QualifyIfPresent(vars, obj, presenceOnly)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else if out != nil {
val = e.adapter.NativeToValue(out)
} else if presenceOnly {
val = types.Bool(present)
}
if present || presenceOnly {
e.observer(e.ID(), e.ConstantQualifier, val)
}
return out, present, err
}
// QualifierValueEquals tests whether the incoming value is equal to the qualifying constant.
func (e *evalWatchConstQual) QualifierValueEquals(value any) bool {
qve, ok := e.ConstantQualifier.(qualifierValueEquator)
return ok && qve.QualifierValueEquals(value)
}
// evalWatchAttrQual observes the qualification of an object by a value computed at runtime.
type evalWatchAttrQual struct {
Attribute
observer EvalObserver
adapter ref.TypeAdapter
}
// Qualify observes the qualification of a object via a value computed at runtime.
func (e *evalWatchAttrQual) Qualify(vars Activation, obj any) (any, error) {
out, err := e.Attribute.Qualify(vars, obj)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else {
val = e.adapter.NativeToValue(out)
}
e.observer(e.ID(), e.Attribute, val)
return out, err
}
// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchAttrQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
out, present, err := e.Attribute.QualifyIfPresent(vars, obj, presenceOnly)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else if out != nil {
val = e.adapter.NativeToValue(out)
} else if presenceOnly {
val = types.Bool(present)
}
if present || presenceOnly {
e.observer(e.ID(), e.Attribute, val)
}
return out, present, err
}
// evalWatchQual observes the qualification of an object by a value computed at runtime.
type evalWatchQual struct {
Qualifier
observer EvalObserver
adapter types.Adapter
}
// Qualify observes the qualification of a object via a value computed at runtime.
func (e *evalWatchQual) Qualify(vars Activation, obj any) (any, error) {
out, err := e.Qualifier.Qualify(vars, obj)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else {
val = e.adapter.NativeToValue(out)
}
e.observer(e.ID(), e.Qualifier, val)
return out, err
}
// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
out, present, err := e.Qualifier.QualifyIfPresent(vars, obj, presenceOnly)
var val ref.Val
if err != nil {
val = types.WrapErr(err)
} else if out != nil {
val = e.adapter.NativeToValue(out)
} else if presenceOnly {
val = types.Bool(present)
}
if present || presenceOnly {
e.observer(e.ID(), e.Qualifier, val)
}
return out, present, err
}
// evalWatchConst describes a watcher of an instConst Interpretable.
type evalWatchConst struct {
InterpretableConst
observer EvalObserver
}
// Eval implements the Interpretable interface method.
func (e *evalWatchConst) Eval(vars Activation) ref.Val {
val := e.Value()
e.observer(e.ID(), e.InterpretableConst, val)
return val
}
// evalExhaustiveOr is just like evalOr, but does not short-circuit argument evaluation.
type evalExhaustiveOr struct {
id int64
terms []Interpretable
}
// ID implements the Interpretable interface method.
func (or *evalExhaustiveOr) ID() int64 {
return or.id
}
// Eval implements the Interpretable interface method.
func (or *evalExhaustiveOr) Eval(ctx Activation) ref.Val {
var err ref.Val = nil
var unk *types.Unknown
isTrue := false
for _, term := range or.terms {
val := term.Eval(ctx)
boolVal, ok := val.(types.Bool)
// flag the result as true
if ok && boolVal == types.True {
isTrue = true
}
if !ok && !isTrue {
isUnk := false
unk, isUnk = types.MaybeMergeUnknowns(val, unk)
if !isUnk && err == nil {
if types.IsError(val) {
err = val
} else {
err = types.MaybeNoSuchOverloadErr(val)
}
}
}
}
if isTrue {
return types.True
}
if unk != nil {
return unk
}
if err != nil {
return err
}
return types.False
}
// evalExhaustiveAnd is just like evalAnd, but does not short-circuit argument evaluation.
type evalExhaustiveAnd struct {
id int64
terms []Interpretable
}
// ID implements the Interpretable interface method.
func (and *evalExhaustiveAnd) ID() int64 {
return and.id
}
// Eval implements the Interpretable interface method.
func (and *evalExhaustiveAnd) Eval(ctx Activation) ref.Val {
var err ref.Val = nil
var unk *types.Unknown
isFalse := false
for _, term := range and.terms {
val := term.Eval(ctx)
boolVal, ok := val.(types.Bool)
// short-circuit on false.
if ok && boolVal == types.False {
isFalse = true
}
if !ok && !isFalse {
isUnk := false
unk, isUnk = types.MaybeMergeUnknowns(val, unk)
if !isUnk && err == nil {
if types.IsError(val) {
err = val
} else {
err = types.MaybeNoSuchOverloadErr(val)
}
}
}
}
if isFalse {
return types.False
}
if unk != nil {
return unk
}
if err != nil {
return err
}
return types.True
}
// evalExhaustiveConditional is like evalConditional, but does not short-circuit argument
// evaluation.
type evalExhaustiveConditional struct {
id int64
adapter types.Adapter
attr *conditionalAttribute
}
// ID implements the Interpretable interface method.
func (cond *evalExhaustiveConditional) ID() int64 {
return cond.id
}
// Eval implements the Interpretable interface method.
func (cond *evalExhaustiveConditional) Eval(ctx Activation) ref.Val {
cVal := cond.attr.expr.Eval(ctx)
tVal, tErr := cond.attr.truthy.Resolve(ctx)
fVal, fErr := cond.attr.falsy.Resolve(ctx)
cBool, ok := cVal.(types.Bool)
if !ok {
return types.ValOrErr(cVal, "no such overload")
}
if cBool {
if tErr != nil {
return types.WrapErr(tErr)
}
return cond.adapter.NativeToValue(tVal)
}
if fErr != nil {
return types.WrapErr(fErr)
}
return cond.adapter.NativeToValue(fVal)
}
// evalAttr evaluates an Attribute value.
type evalAttr struct {
adapter types.Adapter
attr Attribute
optional bool
}
var _ InterpretableAttribute = &evalAttr{}
// ID of the attribute instruction.
func (a *evalAttr) ID() int64 {
return a.attr.ID()
}
// AddQualifier implements the InterpretableAttribute interface method.
func (a *evalAttr) AddQualifier(qual Qualifier) (Attribute, error) {
attr, err := a.attr.AddQualifier(qual)
a.attr = attr
return attr, err
}
// Attr implements the InterpretableAttribute interface method.
func (a *evalAttr) Attr() Attribute {
return a.attr
}
// Adapter implements the InterpretableAttribute interface method.
func (a *evalAttr) Adapter() types.Adapter {
return a.adapter
}
// Eval implements the Interpretable interface method.
func (a *evalAttr) Eval(ctx Activation) ref.Val {
v, err := a.attr.Resolve(ctx)
if err != nil {
return types.WrapErr(err)
}
return a.adapter.NativeToValue(v)
}
// Qualify proxies to the Attribute's Qualify method.
func (a *evalAttr) Qualify(ctx Activation, obj any) (any, error) {
return a.attr.Qualify(ctx, obj)
}
// QualifyIfPresent proxies to the Attribute's QualifyIfPresent method.
func (a *evalAttr) QualifyIfPresent(ctx Activation, obj any, presenceOnly bool) (any, bool, error) {
return a.attr.QualifyIfPresent(ctx, obj, presenceOnly)
}
func (a *evalAttr) IsOptional() bool {
return a.optional
}
// Resolve proxies to the Attribute's Resolve method.
func (a *evalAttr) Resolve(ctx Activation) (any, error) {
return a.attr.Resolve(ctx)
}
type evalWatchConstructor struct {
constructor InterpretableConstructor
observer EvalObserver
}
// InitVals implements the InterpretableConstructor InitVals function.
func (c *evalWatchConstructor) InitVals() []Interpretable {
return c.constructor.InitVals()
}
// Type implements the InterpretableConstructor Type function.
func (c *evalWatchConstructor) Type() ref.Type {
return c.constructor.Type()
}
// ID implements the Interpretable ID function.
func (c *evalWatchConstructor) ID() int64 {
return c.constructor.ID()
}
// Eval implements the Interpretable Eval function.
func (c *evalWatchConstructor) Eval(ctx Activation) ref.Val {
val := c.constructor.Eval(ctx)
c.observer(c.ID(), c.constructor, val)
return val
}
func invalidOptionalEntryInit(field any, value ref.Val) ref.Val {
return types.NewErr("cannot initialize optional entry '%v' from non-optional value %v", field, value)
}
func invalidOptionalElementInit(value ref.Val) ref.Val {
return types.NewErr("cannot initialize optional list element from non-optional value %v", value)
}
|