File: interpretable.go

package info (click to toggle)
golang-github-google-cel-go 0.18.2%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,888 kB
  • sloc: sh: 93; makefile: 12
file content (1262 lines) | stat: -rw-r--r-- 34,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package interpreter

import (
	"fmt"

	"github.com/google/cel-go/common/functions"
	"github.com/google/cel-go/common/operators"
	"github.com/google/cel-go/common/overloads"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
	"github.com/google/cel-go/common/types/traits"
)

// Interpretable can accept a given Activation and produce a value along with
// an accompanying EvalState which can be used to inspect whether additional
// data might be necessary to complete the evaluation.
type Interpretable interface {
	// ID value corresponding to the expression node.
	ID() int64

	// Eval an Activation to produce an output.
	Eval(activation Activation) ref.Val
}

// InterpretableConst interface for tracking whether the Interpretable is a constant value.
type InterpretableConst interface {
	Interpretable

	// Value returns the constant value of the instruction.
	Value() ref.Val
}

// InterpretableAttribute interface for tracking whether the Interpretable is an attribute.
type InterpretableAttribute interface {
	Interpretable

	// Attr returns the Attribute value.
	Attr() Attribute

	// Adapter returns the type adapter to be used for adapting resolved Attribute values.
	Adapter() types.Adapter

	// AddQualifier proxies the Attribute.AddQualifier method.
	//
	// Note, this method may mutate the current attribute state. If the desire is to clone the
	// Attribute, the Attribute should first be copied before adding the qualifier. Attributes
	// are not copyable by default, so this is a capable that would need to be added to the
	// AttributeFactory or specifically to the underlying Attribute implementation.
	AddQualifier(Qualifier) (Attribute, error)

	// Qualify replicates the Attribute.Qualify method to permit extension and interception
	// of object qualification.
	Qualify(vars Activation, obj any) (any, error)

	// QualifyIfPresent qualifies the object if the qualifier is declared or defined on the object.
	// The 'presenceOnly' flag indicates that the value is not necessary, just a boolean status as
	// to whether the qualifier is present.
	QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error)

	// IsOptional indicates whether the resulting value is an optional type.
	IsOptional() bool

	// Resolve returns the value of the Attribute given the current Activation.
	Resolve(Activation) (any, error)
}

// InterpretableCall interface for inspecting Interpretable instructions related to function calls.
type InterpretableCall interface {
	Interpretable

	// Function returns the function name as it appears in text or mangled operator name as it
	// appears in the operators.go file.
	Function() string

	// OverloadID returns the overload id associated with the function specialization.
	// Overload ids are stable across language boundaries and can be treated as synonymous with a
	// unique function signature.
	OverloadID() string

	// Args returns the normalized arguments to the function overload.
	// For receiver-style functions, the receiver target is arg 0.
	Args() []Interpretable
}

// InterpretableConstructor interface for inspecting  Interpretable instructions that initialize a list, map
// or struct.
type InterpretableConstructor interface {
	Interpretable

	// InitVals returns all the list elements, map key and values or struct field values.
	InitVals() []Interpretable

	// Type returns the type constructed.
	Type() ref.Type
}

// Core Interpretable implementations used during the program planning phase.

type evalTestOnly struct {
	id int64
	InterpretableAttribute
}

// ID implements the Interpretable interface method.
func (test *evalTestOnly) ID() int64 {
	return test.id
}

// Eval implements the Interpretable interface method.
func (test *evalTestOnly) Eval(ctx Activation) ref.Val {
	val, err := test.Resolve(ctx)
	// Return an error if the resolve step fails
	if err != nil {
		return types.WrapErr(err)
	}
	if optVal, isOpt := val.(*types.Optional); isOpt {
		return types.Bool(optVal.HasValue())
	}
	return test.Adapter().NativeToValue(val)
}

// AddQualifier appends a qualifier that will always and only perform a presence test.
func (test *evalTestOnly) AddQualifier(q Qualifier) (Attribute, error) {
	cq, ok := q.(ConstantQualifier)
	if !ok {
		return nil, fmt.Errorf("test only expressions must have constant qualifiers: %v", q)
	}
	return test.InterpretableAttribute.AddQualifier(&testOnlyQualifier{ConstantQualifier: cq})
}

type testOnlyQualifier struct {
	ConstantQualifier
}

// Qualify determines whether the test-only qualifier is present on the input object.
func (q *testOnlyQualifier) Qualify(vars Activation, obj any) (any, error) {
	out, present, err := q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
	if err != nil {
		return nil, err
	}
	if unk, isUnk := out.(types.Unknown); isUnk {
		return unk, nil
	}
	if opt, isOpt := out.(types.Optional); isOpt {
		return opt.HasValue(), nil
	}
	return present, nil
}

// QualifyIfPresent returns whether the target field in the test-only expression is present.
func (q *testOnlyQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
	// Only ever test for presence.
	return q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
}

// QualifierValueEquals determines whether the test-only constant qualifier equals the input value.
func (q *testOnlyQualifier) QualifierValueEquals(value any) bool {
	// The input qualifier will always be of type string
	return q.ConstantQualifier.Value().Value() == value
}

// NewConstValue creates a new constant valued Interpretable.
func NewConstValue(id int64, val ref.Val) InterpretableConst {
	return &evalConst{
		id:  id,
		val: val,
	}
}

type evalConst struct {
	id  int64
	val ref.Val
}

// ID implements the Interpretable interface method.
func (cons *evalConst) ID() int64 {
	return cons.id
}

// Eval implements the Interpretable interface method.
func (cons *evalConst) Eval(ctx Activation) ref.Val {
	return cons.val
}

// Value implements the InterpretableConst interface method.
func (cons *evalConst) Value() ref.Val {
	return cons.val
}

type evalOr struct {
	id    int64
	terms []Interpretable
}

// ID implements the Interpretable interface method.
func (or *evalOr) ID() int64 {
	return or.id
}

// Eval implements the Interpretable interface method.
func (or *evalOr) Eval(ctx Activation) ref.Val {
	var err ref.Val = nil
	var unk *types.Unknown
	for _, term := range or.terms {
		val := term.Eval(ctx)
		boolVal, ok := val.(types.Bool)
		// short-circuit on true.
		if ok && boolVal == types.True {
			return types.True
		}
		if !ok {
			isUnk := false
			unk, isUnk = types.MaybeMergeUnknowns(val, unk)
			if !isUnk && err == nil {
				if types.IsError(val) {
					err = val
				} else {
					err = types.MaybeNoSuchOverloadErr(val)
				}
			}
		}
	}
	if unk != nil {
		return unk
	}
	if err != nil {
		return err
	}
	return types.False
}

type evalAnd struct {
	id    int64
	terms []Interpretable
}

// ID implements the Interpretable interface method.
func (and *evalAnd) ID() int64 {
	return and.id
}

// Eval implements the Interpretable interface method.
func (and *evalAnd) Eval(ctx Activation) ref.Val {
	var err ref.Val = nil
	var unk *types.Unknown
	for _, term := range and.terms {
		val := term.Eval(ctx)
		boolVal, ok := val.(types.Bool)
		// short-circuit on false.
		if ok && boolVal == types.False {
			return types.False
		}
		if !ok {
			isUnk := false
			unk, isUnk = types.MaybeMergeUnknowns(val, unk)
			if !isUnk && err == nil {
				if types.IsError(val) {
					err = val
				} else {
					err = types.MaybeNoSuchOverloadErr(val)
				}
			}
		}
	}
	if unk != nil {
		return unk
	}
	if err != nil {
		return err
	}
	return types.True
}

type evalEq struct {
	id  int64
	lhs Interpretable
	rhs Interpretable
}

// ID implements the Interpretable interface method.
func (eq *evalEq) ID() int64 {
	return eq.id
}

// Eval implements the Interpretable interface method.
func (eq *evalEq) Eval(ctx Activation) ref.Val {
	lVal := eq.lhs.Eval(ctx)
	rVal := eq.rhs.Eval(ctx)
	if types.IsUnknownOrError(lVal) {
		return lVal
	}
	if types.IsUnknownOrError(rVal) {
		return rVal
	}
	return types.Equal(lVal, rVal)
}

// Function implements the InterpretableCall interface method.
func (*evalEq) Function() string {
	return operators.Equals
}

// OverloadID implements the InterpretableCall interface method.
func (*evalEq) OverloadID() string {
	return overloads.Equals
}

// Args implements the InterpretableCall interface method.
func (eq *evalEq) Args() []Interpretable {
	return []Interpretable{eq.lhs, eq.rhs}
}

type evalNe struct {
	id  int64
	lhs Interpretable
	rhs Interpretable
}

// ID implements the Interpretable interface method.
func (ne *evalNe) ID() int64 {
	return ne.id
}

// Eval implements the Interpretable interface method.
func (ne *evalNe) Eval(ctx Activation) ref.Val {
	lVal := ne.lhs.Eval(ctx)
	rVal := ne.rhs.Eval(ctx)
	if types.IsUnknownOrError(lVal) {
		return lVal
	}
	if types.IsUnknownOrError(rVal) {
		return rVal
	}
	return types.Bool(types.Equal(lVal, rVal) != types.True)
}

// Function implements the InterpretableCall interface method.
func (*evalNe) Function() string {
	return operators.NotEquals
}

// OverloadID implements the InterpretableCall interface method.
func (*evalNe) OverloadID() string {
	return overloads.NotEquals
}

// Args implements the InterpretableCall interface method.
func (ne *evalNe) Args() []Interpretable {
	return []Interpretable{ne.lhs, ne.rhs}
}

type evalZeroArity struct {
	id       int64
	function string
	overload string
	impl     functions.FunctionOp
}

// ID implements the Interpretable interface method.
func (zero *evalZeroArity) ID() int64 {
	return zero.id
}

// Eval implements the Interpretable interface method.
func (zero *evalZeroArity) Eval(ctx Activation) ref.Val {
	return zero.impl()
}

// Function implements the InterpretableCall interface method.
func (zero *evalZeroArity) Function() string {
	return zero.function
}

// OverloadID implements the InterpretableCall interface method.
func (zero *evalZeroArity) OverloadID() string {
	return zero.overload
}

// Args returns the argument to the unary function.
func (zero *evalZeroArity) Args() []Interpretable {
	return []Interpretable{}
}

type evalUnary struct {
	id        int64
	function  string
	overload  string
	arg       Interpretable
	trait     int
	impl      functions.UnaryOp
	nonStrict bool
}

// ID implements the Interpretable interface method.
func (un *evalUnary) ID() int64 {
	return un.id
}

// Eval implements the Interpretable interface method.
func (un *evalUnary) Eval(ctx Activation) ref.Val {
	argVal := un.arg.Eval(ctx)
	// Early return if the argument to the function is unknown or error.
	strict := !un.nonStrict
	if strict && types.IsUnknownOrError(argVal) {
		return argVal
	}
	// If the implementation is bound and the argument value has the right traits required to
	// invoke it, then call the implementation.
	if un.impl != nil && (un.trait == 0 || (!strict && types.IsUnknownOrError(argVal)) || argVal.Type().HasTrait(un.trait)) {
		return un.impl(argVal)
	}
	// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
	// operand (arg0).
	if argVal.Type().HasTrait(traits.ReceiverType) {
		return argVal.(traits.Receiver).Receive(un.function, un.overload, []ref.Val{})
	}
	return types.NewErr("no such overload: %s", un.function)
}

// Function implements the InterpretableCall interface method.
func (un *evalUnary) Function() string {
	return un.function
}

// OverloadID implements the InterpretableCall interface method.
func (un *evalUnary) OverloadID() string {
	return un.overload
}

// Args returns the argument to the unary function.
func (un *evalUnary) Args() []Interpretable {
	return []Interpretable{un.arg}
}

type evalBinary struct {
	id        int64
	function  string
	overload  string
	lhs       Interpretable
	rhs       Interpretable
	trait     int
	impl      functions.BinaryOp
	nonStrict bool
}

// ID implements the Interpretable interface method.
func (bin *evalBinary) ID() int64 {
	return bin.id
}

// Eval implements the Interpretable interface method.
func (bin *evalBinary) Eval(ctx Activation) ref.Val {
	lVal := bin.lhs.Eval(ctx)
	rVal := bin.rhs.Eval(ctx)
	// Early return if any argument to the function is unknown or error.
	strict := !bin.nonStrict
	if strict {
		if types.IsUnknownOrError(lVal) {
			return lVal
		}
		if types.IsUnknownOrError(rVal) {
			return rVal
		}
	}
	// If the implementation is bound and the argument value has the right traits required to
	// invoke it, then call the implementation.
	if bin.impl != nil && (bin.trait == 0 || (!strict && types.IsUnknownOrError(lVal)) || lVal.Type().HasTrait(bin.trait)) {
		return bin.impl(lVal, rVal)
	}
	// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
	// operand (arg0).
	if lVal.Type().HasTrait(traits.ReceiverType) {
		return lVal.(traits.Receiver).Receive(bin.function, bin.overload, []ref.Val{rVal})
	}
	return types.NewErr("no such overload: %s", bin.function)
}

// Function implements the InterpretableCall interface method.
func (bin *evalBinary) Function() string {
	return bin.function
}

// OverloadID implements the InterpretableCall interface method.
func (bin *evalBinary) OverloadID() string {
	return bin.overload
}

// Args returns the argument to the unary function.
func (bin *evalBinary) Args() []Interpretable {
	return []Interpretable{bin.lhs, bin.rhs}
}

type evalVarArgs struct {
	id        int64
	function  string
	overload  string
	args      []Interpretable
	trait     int
	impl      functions.FunctionOp
	nonStrict bool
}

// NewCall creates a new call Interpretable.
func NewCall(id int64, function, overload string, args []Interpretable, impl functions.FunctionOp) InterpretableCall {
	return &evalVarArgs{
		id:       id,
		function: function,
		overload: overload,
		args:     args,
		impl:     impl,
	}
}

// ID implements the Interpretable interface method.
func (fn *evalVarArgs) ID() int64 {
	return fn.id
}

// Eval implements the Interpretable interface method.
func (fn *evalVarArgs) Eval(ctx Activation) ref.Val {
	argVals := make([]ref.Val, len(fn.args))
	// Early return if any argument to the function is unknown or error.
	strict := !fn.nonStrict
	for i, arg := range fn.args {
		argVals[i] = arg.Eval(ctx)
		if strict && types.IsUnknownOrError(argVals[i]) {
			return argVals[i]
		}
	}
	// If the implementation is bound and the argument value has the right traits required to
	// invoke it, then call the implementation.
	arg0 := argVals[0]
	if fn.impl != nil && (fn.trait == 0 || (!strict && types.IsUnknownOrError(arg0)) || arg0.Type().HasTrait(fn.trait)) {
		return fn.impl(argVals...)
	}
	// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
	// operand (arg0).
	if arg0.Type().HasTrait(traits.ReceiverType) {
		return arg0.(traits.Receiver).Receive(fn.function, fn.overload, argVals[1:])
	}
	return types.NewErr("no such overload: %s", fn.function)
}

// Function implements the InterpretableCall interface method.
func (fn *evalVarArgs) Function() string {
	return fn.function
}

// OverloadID implements the InterpretableCall interface method.
func (fn *evalVarArgs) OverloadID() string {
	return fn.overload
}

// Args returns the argument to the unary function.
func (fn *evalVarArgs) Args() []Interpretable {
	return fn.args
}

type evalList struct {
	id           int64
	elems        []Interpretable
	optionals    []bool
	hasOptionals bool
	adapter      types.Adapter
}

// ID implements the Interpretable interface method.
func (l *evalList) ID() int64 {
	return l.id
}

// Eval implements the Interpretable interface method.
func (l *evalList) Eval(ctx Activation) ref.Val {
	elemVals := make([]ref.Val, 0, len(l.elems))
	// If any argument is unknown or error early terminate.
	for i, elem := range l.elems {
		elemVal := elem.Eval(ctx)
		if types.IsUnknownOrError(elemVal) {
			return elemVal
		}
		if l.hasOptionals && l.optionals[i] {
			optVal, ok := elemVal.(*types.Optional)
			if !ok {
				return invalidOptionalElementInit(elemVal)
			}
			if !optVal.HasValue() {
				continue
			}
			elemVal = optVal.GetValue()
		}
		elemVals = append(elemVals, elemVal)
	}
	return l.adapter.NativeToValue(elemVals)
}

func (l *evalList) InitVals() []Interpretable {
	return l.elems
}

func (l *evalList) Type() ref.Type {
	return types.ListType
}

type evalMap struct {
	id           int64
	keys         []Interpretable
	vals         []Interpretable
	optionals    []bool
	hasOptionals bool
	adapter      types.Adapter
}

// ID implements the Interpretable interface method.
func (m *evalMap) ID() int64 {
	return m.id
}

// Eval implements the Interpretable interface method.
func (m *evalMap) Eval(ctx Activation) ref.Val {
	entries := make(map[ref.Val]ref.Val)
	// If any argument is unknown or error early terminate.
	for i, key := range m.keys {
		keyVal := key.Eval(ctx)
		if types.IsUnknownOrError(keyVal) {
			return keyVal
		}
		valVal := m.vals[i].Eval(ctx)
		if types.IsUnknownOrError(valVal) {
			return valVal
		}
		if m.hasOptionals && m.optionals[i] {
			optVal, ok := valVal.(*types.Optional)
			if !ok {
				return invalidOptionalEntryInit(keyVal, valVal)
			}
			if !optVal.HasValue() {
				delete(entries, keyVal)
				continue
			}
			valVal = optVal.GetValue()
		}
		entries[keyVal] = valVal
	}
	return m.adapter.NativeToValue(entries)
}

func (m *evalMap) InitVals() []Interpretable {
	if len(m.keys) != len(m.vals) {
		return nil
	}
	result := make([]Interpretable, len(m.keys)+len(m.vals))
	idx := 0
	for i, k := range m.keys {
		v := m.vals[i]
		result[idx] = k
		idx++
		result[idx] = v
		idx++
	}
	return result
}

func (m *evalMap) Type() ref.Type {
	return types.MapType
}

type evalObj struct {
	id           int64
	typeName     string
	fields       []string
	vals         []Interpretable
	optionals    []bool
	hasOptionals bool
	provider     types.Provider
}

// ID implements the Interpretable interface method.
func (o *evalObj) ID() int64 {
	return o.id
}

// Eval implements the Interpretable interface method.
func (o *evalObj) Eval(ctx Activation) ref.Val {
	fieldVals := make(map[string]ref.Val)
	// If any argument is unknown or error early terminate.
	for i, field := range o.fields {
		val := o.vals[i].Eval(ctx)
		if types.IsUnknownOrError(val) {
			return val
		}
		if o.hasOptionals && o.optionals[i] {
			optVal, ok := val.(*types.Optional)
			if !ok {
				return invalidOptionalEntryInit(field, val)
			}
			if !optVal.HasValue() {
				delete(fieldVals, field)
				continue
			}
			val = optVal.GetValue()
		}
		fieldVals[field] = val
	}
	return o.provider.NewValue(o.typeName, fieldVals)
}

func (o *evalObj) InitVals() []Interpretable {
	return o.vals
}

func (o *evalObj) Type() ref.Type {
	return types.NewObjectTypeValue(o.typeName)
}

type evalFold struct {
	id            int64
	accuVar       string
	iterVar       string
	iterRange     Interpretable
	accu          Interpretable
	cond          Interpretable
	step          Interpretable
	result        Interpretable
	adapter       types.Adapter
	exhaustive    bool
	interruptable bool
}

// ID implements the Interpretable interface method.
func (fold *evalFold) ID() int64 {
	return fold.id
}

// Eval implements the Interpretable interface method.
func (fold *evalFold) Eval(ctx Activation) ref.Val {
	foldRange := fold.iterRange.Eval(ctx)
	if !foldRange.Type().HasTrait(traits.IterableType) {
		return types.ValOrErr(foldRange, "got '%T', expected iterable type", foldRange)
	}
	// Configure the fold activation with the accumulator initial value.
	accuCtx := varActivationPool.Get().(*varActivation)
	accuCtx.parent = ctx
	accuCtx.name = fold.accuVar
	accuCtx.val = fold.accu.Eval(ctx)
	// If the accumulator starts as an empty list, then the comprehension will build a list
	// so create a mutable list to optimize the cost of the inner loop.
	l, ok := accuCtx.val.(traits.Lister)
	buildingList := false
	if !fold.exhaustive && ok && l.Size() == types.IntZero {
		buildingList = true
		accuCtx.val = types.NewMutableList(fold.adapter)
	}
	iterCtx := varActivationPool.Get().(*varActivation)
	iterCtx.parent = accuCtx
	iterCtx.name = fold.iterVar

	interrupted := false
	it := foldRange.(traits.Iterable).Iterator()
	for it.HasNext() == types.True {
		// Modify the iter var in the fold activation.
		iterCtx.val = it.Next()

		// Evaluate the condition, terminate the loop if false.
		cond := fold.cond.Eval(iterCtx)
		condBool, ok := cond.(types.Bool)
		if !fold.exhaustive && ok && condBool != types.True {
			break
		}
		// Evaluate the evaluation step into accu var.
		accuCtx.val = fold.step.Eval(iterCtx)
		if fold.interruptable {
			if stop, found := ctx.ResolveName("#interrupted"); found && stop == true {
				interrupted = true
				break
			}
		}
	}
	varActivationPool.Put(iterCtx)
	if interrupted {
		varActivationPool.Put(accuCtx)
		return types.NewErr("operation interrupted")
	}

	// Compute the result.
	res := fold.result.Eval(accuCtx)
	varActivationPool.Put(accuCtx)
	// Convert a mutable list to an immutable one, if the comprehension has generated a list as a result.
	if !types.IsUnknownOrError(res) && buildingList {
		if _, ok := res.(traits.MutableLister); ok {
			res = res.(traits.MutableLister).ToImmutableList()
		}
	}
	return res
}

// Optional Interpretable implementations that specialize, subsume, or extend the core evaluation
// plan via decorators.

// evalSetMembership is an Interpretable implementation which tests whether an input value
// exists within the set of map keys used to model a set.
type evalSetMembership struct {
	inst     Interpretable
	arg      Interpretable
	valueSet map[ref.Val]ref.Val
}

// ID implements the Interpretable interface method.
func (e *evalSetMembership) ID() int64 {
	return e.inst.ID()
}

// Eval implements the Interpretable interface method.
func (e *evalSetMembership) Eval(ctx Activation) ref.Val {
	val := e.arg.Eval(ctx)
	if types.IsUnknownOrError(val) {
		return val
	}
	if ret, found := e.valueSet[val]; found {
		return ret
	}
	return types.False
}

// evalWatch is an Interpretable implementation that wraps the execution of a given
// expression so that it may observe the computed value and send it to an observer.
type evalWatch struct {
	Interpretable
	observer EvalObserver
}

// Eval implements the Interpretable interface method.
func (e *evalWatch) Eval(ctx Activation) ref.Val {
	val := e.Interpretable.Eval(ctx)
	e.observer(e.ID(), e.Interpretable, val)
	return val
}

// evalWatchAttr describes a watcher of an InterpretableAttribute Interpretable.
//
// Since the watcher may be selected against at a later stage in program planning, the watcher
// must implement the InterpretableAttribute interface by proxy.
type evalWatchAttr struct {
	InterpretableAttribute
	observer EvalObserver
}

// AddQualifier creates a wrapper over the incoming qualifier which observes the qualification
// result.
func (e *evalWatchAttr) AddQualifier(q Qualifier) (Attribute, error) {
	switch qual := q.(type) {
	// By default, the qualifier is either a constant or an attribute
	// There may be some custom cases where the attribute is neither.
	case ConstantQualifier:
		// Expose a method to test whether the qualifier matches the input pattern.
		q = &evalWatchConstQual{
			ConstantQualifier: qual,
			observer:          e.observer,
			adapter:           e.Adapter(),
		}
	case *evalWatchAttr:
		// Unwrap the evalWatchAttr since the observation will be applied during Qualify or
		// QualifyIfPresent rather than Eval.
		q = &evalWatchAttrQual{
			Attribute: qual.InterpretableAttribute,
			observer:  e.observer,
			adapter:   e.Adapter(),
		}
	case Attribute:
		// Expose methods which intercept the qualification prior to being applied as a qualifier.
		// Using this interface ensures that the qualifier is converted to a constant value one
		// time during attribute pattern matching as the method embeds the Attribute interface
		// needed to trip the conversion to a constant.
		q = &evalWatchAttrQual{
			Attribute: qual,
			observer:  e.observer,
			adapter:   e.Adapter(),
		}
	default:
		// This is likely a custom qualifier type.
		q = &evalWatchQual{
			Qualifier: qual,
			observer:  e.observer,
			adapter:   e.Adapter(),
		}
	}
	_, err := e.InterpretableAttribute.AddQualifier(q)
	return e, err
}

// Eval implements the Interpretable interface method.
func (e *evalWatchAttr) Eval(vars Activation) ref.Val {
	val := e.InterpretableAttribute.Eval(vars)
	e.observer(e.ID(), e.InterpretableAttribute, val)
	return val
}

// evalWatchConstQual observes the qualification of an object using a constant boolean, int,
// string, or uint.
type evalWatchConstQual struct {
	ConstantQualifier
	observer EvalObserver
	adapter  types.Adapter
}

// Qualify observes the qualification of a object via a constant boolean, int, string, or uint.
func (e *evalWatchConstQual) Qualify(vars Activation, obj any) (any, error) {
	out, err := e.ConstantQualifier.Qualify(vars, obj)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else {
		val = e.adapter.NativeToValue(out)
	}
	e.observer(e.ID(), e.ConstantQualifier, val)
	return out, err
}

// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchConstQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
	out, present, err := e.ConstantQualifier.QualifyIfPresent(vars, obj, presenceOnly)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else if out != nil {
		val = e.adapter.NativeToValue(out)
	} else if presenceOnly {
		val = types.Bool(present)
	}
	if present || presenceOnly {
		e.observer(e.ID(), e.ConstantQualifier, val)
	}
	return out, present, err
}

// QualifierValueEquals tests whether the incoming value is equal to the qualifying constant.
func (e *evalWatchConstQual) QualifierValueEquals(value any) bool {
	qve, ok := e.ConstantQualifier.(qualifierValueEquator)
	return ok && qve.QualifierValueEquals(value)
}

// evalWatchAttrQual observes the qualification of an object by a value computed at runtime.
type evalWatchAttrQual struct {
	Attribute
	observer EvalObserver
	adapter  ref.TypeAdapter
}

// Qualify observes the qualification of a object via a value computed at runtime.
func (e *evalWatchAttrQual) Qualify(vars Activation, obj any) (any, error) {
	out, err := e.Attribute.Qualify(vars, obj)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else {
		val = e.adapter.NativeToValue(out)
	}
	e.observer(e.ID(), e.Attribute, val)
	return out, err
}

// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchAttrQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
	out, present, err := e.Attribute.QualifyIfPresent(vars, obj, presenceOnly)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else if out != nil {
		val = e.adapter.NativeToValue(out)
	} else if presenceOnly {
		val = types.Bool(present)
	}
	if present || presenceOnly {
		e.observer(e.ID(), e.Attribute, val)
	}
	return out, present, err
}

// evalWatchQual observes the qualification of an object by a value computed at runtime.
type evalWatchQual struct {
	Qualifier
	observer EvalObserver
	adapter  types.Adapter
}

// Qualify observes the qualification of a object via a value computed at runtime.
func (e *evalWatchQual) Qualify(vars Activation, obj any) (any, error) {
	out, err := e.Qualifier.Qualify(vars, obj)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else {
		val = e.adapter.NativeToValue(out)
	}
	e.observer(e.ID(), e.Qualifier, val)
	return out, err
}

// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
func (e *evalWatchQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
	out, present, err := e.Qualifier.QualifyIfPresent(vars, obj, presenceOnly)
	var val ref.Val
	if err != nil {
		val = types.WrapErr(err)
	} else if out != nil {
		val = e.adapter.NativeToValue(out)
	} else if presenceOnly {
		val = types.Bool(present)
	}
	if present || presenceOnly {
		e.observer(e.ID(), e.Qualifier, val)
	}
	return out, present, err
}

// evalWatchConst describes a watcher of an instConst Interpretable.
type evalWatchConst struct {
	InterpretableConst
	observer EvalObserver
}

// Eval implements the Interpretable interface method.
func (e *evalWatchConst) Eval(vars Activation) ref.Val {
	val := e.Value()
	e.observer(e.ID(), e.InterpretableConst, val)
	return val
}

// evalExhaustiveOr is just like evalOr, but does not short-circuit argument evaluation.
type evalExhaustiveOr struct {
	id    int64
	terms []Interpretable
}

// ID implements the Interpretable interface method.
func (or *evalExhaustiveOr) ID() int64 {
	return or.id
}

// Eval implements the Interpretable interface method.
func (or *evalExhaustiveOr) Eval(ctx Activation) ref.Val {
	var err ref.Val = nil
	var unk *types.Unknown
	isTrue := false
	for _, term := range or.terms {
		val := term.Eval(ctx)
		boolVal, ok := val.(types.Bool)
		// flag the result as true
		if ok && boolVal == types.True {
			isTrue = true
		}
		if !ok && !isTrue {
			isUnk := false
			unk, isUnk = types.MaybeMergeUnknowns(val, unk)
			if !isUnk && err == nil {
				if types.IsError(val) {
					err = val
				} else {
					err = types.MaybeNoSuchOverloadErr(val)
				}
			}
		}
	}
	if isTrue {
		return types.True
	}
	if unk != nil {
		return unk
	}
	if err != nil {
		return err
	}
	return types.False
}

// evalExhaustiveAnd is just like evalAnd, but does not short-circuit argument evaluation.
type evalExhaustiveAnd struct {
	id    int64
	terms []Interpretable
}

// ID implements the Interpretable interface method.
func (and *evalExhaustiveAnd) ID() int64 {
	return and.id
}

// Eval implements the Interpretable interface method.
func (and *evalExhaustiveAnd) Eval(ctx Activation) ref.Val {
	var err ref.Val = nil
	var unk *types.Unknown
	isFalse := false
	for _, term := range and.terms {
		val := term.Eval(ctx)
		boolVal, ok := val.(types.Bool)
		// short-circuit on false.
		if ok && boolVal == types.False {
			isFalse = true
		}
		if !ok && !isFalse {
			isUnk := false
			unk, isUnk = types.MaybeMergeUnknowns(val, unk)
			if !isUnk && err == nil {
				if types.IsError(val) {
					err = val
				} else {
					err = types.MaybeNoSuchOverloadErr(val)
				}
			}
		}
	}
	if isFalse {
		return types.False
	}
	if unk != nil {
		return unk
	}
	if err != nil {
		return err
	}
	return types.True
}

// evalExhaustiveConditional is like evalConditional, but does not short-circuit argument
// evaluation.
type evalExhaustiveConditional struct {
	id      int64
	adapter types.Adapter
	attr    *conditionalAttribute
}

// ID implements the Interpretable interface method.
func (cond *evalExhaustiveConditional) ID() int64 {
	return cond.id
}

// Eval implements the Interpretable interface method.
func (cond *evalExhaustiveConditional) Eval(ctx Activation) ref.Val {
	cVal := cond.attr.expr.Eval(ctx)
	tVal, tErr := cond.attr.truthy.Resolve(ctx)
	fVal, fErr := cond.attr.falsy.Resolve(ctx)
	cBool, ok := cVal.(types.Bool)
	if !ok {
		return types.ValOrErr(cVal, "no such overload")
	}
	if cBool {
		if tErr != nil {
			return types.WrapErr(tErr)
		}
		return cond.adapter.NativeToValue(tVal)
	}
	if fErr != nil {
		return types.WrapErr(fErr)
	}
	return cond.adapter.NativeToValue(fVal)
}

// evalAttr evaluates an Attribute value.
type evalAttr struct {
	adapter  types.Adapter
	attr     Attribute
	optional bool
}

var _ InterpretableAttribute = &evalAttr{}

// ID of the attribute instruction.
func (a *evalAttr) ID() int64 {
	return a.attr.ID()
}

// AddQualifier implements the InterpretableAttribute interface method.
func (a *evalAttr) AddQualifier(qual Qualifier) (Attribute, error) {
	attr, err := a.attr.AddQualifier(qual)
	a.attr = attr
	return attr, err
}

// Attr implements the InterpretableAttribute interface method.
func (a *evalAttr) Attr() Attribute {
	return a.attr
}

// Adapter implements the InterpretableAttribute interface method.
func (a *evalAttr) Adapter() types.Adapter {
	return a.adapter
}

// Eval implements the Interpretable interface method.
func (a *evalAttr) Eval(ctx Activation) ref.Val {
	v, err := a.attr.Resolve(ctx)
	if err != nil {
		return types.WrapErr(err)
	}
	return a.adapter.NativeToValue(v)
}

// Qualify proxies to the Attribute's Qualify method.
func (a *evalAttr) Qualify(ctx Activation, obj any) (any, error) {
	return a.attr.Qualify(ctx, obj)
}

// QualifyIfPresent proxies to the Attribute's QualifyIfPresent method.
func (a *evalAttr) QualifyIfPresent(ctx Activation, obj any, presenceOnly bool) (any, bool, error) {
	return a.attr.QualifyIfPresent(ctx, obj, presenceOnly)
}

func (a *evalAttr) IsOptional() bool {
	return a.optional
}

// Resolve proxies to the Attribute's Resolve method.
func (a *evalAttr) Resolve(ctx Activation) (any, error) {
	return a.attr.Resolve(ctx)
}

type evalWatchConstructor struct {
	constructor InterpretableConstructor
	observer    EvalObserver
}

// InitVals implements the InterpretableConstructor InitVals function.
func (c *evalWatchConstructor) InitVals() []Interpretable {
	return c.constructor.InitVals()
}

// Type implements the InterpretableConstructor Type function.
func (c *evalWatchConstructor) Type() ref.Type {
	return c.constructor.Type()
}

// ID implements the Interpretable ID function.
func (c *evalWatchConstructor) ID() int64 {
	return c.constructor.ID()
}

// Eval implements the Interpretable Eval function.
func (c *evalWatchConstructor) Eval(ctx Activation) ref.Val {
	val := c.constructor.Eval(ctx)
	c.observer(c.ID(), c.constructor, val)
	return val
}

func invalidOptionalEntryInit(field any, value ref.Val) ref.Val {
	return types.NewErr("cannot initialize optional entry '%v' from non-optional value %v", field, value)
}

func invalidOptionalElementInit(value ref.Val) ref.Val {
	return types.NewErr("cannot initialize optional list element from non-optional value %v", value)
}