File: runtimecost.go

package info (click to toggle)
golang-github-google-cel-go 0.18.2%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,888 kB
  • sloc: sh: 93; makefile: 12
file content (316 lines) | stat: -rw-r--r-- 12,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package interpreter

import (
	"math"

	"github.com/google/cel-go/common"
	"github.com/google/cel-go/common/overloads"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
	"github.com/google/cel-go/common/types/traits"
)

// WARNING: Any changes to cost calculations in this file require a corresponding change in checker/cost.go

// ActualCostEstimator provides function call cost estimations at runtime
// CallCost returns an estimated cost for the function overload invocation with the given args, or nil if it has no
// estimate to provide. CEL attempts to provide reasonable estimates for its standard function library, so CallCost
// should typically not need to provide an estimate for CELs standard function.
type ActualCostEstimator interface {
	CallCost(function, overloadID string, args []ref.Val, result ref.Val) *uint64
}

// CostObserver provides an observer that tracks runtime cost.
func CostObserver(tracker *CostTracker) EvalObserver {
	observer := func(id int64, programStep any, val ref.Val) {
		switch t := programStep.(type) {
		case ConstantQualifier:
			// TODO: Push identifiers on to the stack before observing constant qualifiers that apply to them
			// and enable the below pop. Once enabled this can case can be collapsed into the Qualifier case.
			tracker.cost++
		case InterpretableConst:
			// zero cost
		case InterpretableAttribute:
			switch a := t.Attr().(type) {
			case *conditionalAttribute:
				// Ternary has no direct cost. All cost is from the conditional and the true/false branch expressions.
				tracker.stack.drop(a.falsy.ID(), a.truthy.ID(), a.expr.ID())
			default:
				tracker.stack.drop(t.Attr().ID())
				tracker.cost += common.SelectAndIdentCost
			}
			if !tracker.presenceTestHasCost {
				if _, isTestOnly := programStep.(*evalTestOnly); isTestOnly {
					tracker.cost -= common.SelectAndIdentCost
				}
			}
		case *evalExhaustiveConditional:
			// Ternary has no direct cost. All cost is from the conditional and the true/false branch expressions.
			tracker.stack.drop(t.attr.falsy.ID(), t.attr.truthy.ID(), t.attr.expr.ID())

		// While the field names are identical, the boolean operation eval structs do not share an interface and so
		// must be handled individually.
		case *evalOr:
			for _, term := range t.terms {
				tracker.stack.drop(term.ID())
			}
		case *evalAnd:
			for _, term := range t.terms {
				tracker.stack.drop(term.ID())
			}
		case *evalExhaustiveOr:
			for _, term := range t.terms {
				tracker.stack.drop(term.ID())
			}
		case *evalExhaustiveAnd:
			for _, term := range t.terms {
				tracker.stack.drop(term.ID())
			}
		case *evalFold:
			tracker.stack.drop(t.iterRange.ID())
		case Qualifier:
			tracker.cost++
		case InterpretableCall:
			if argVals, ok := tracker.stack.dropArgs(t.Args()); ok {
				tracker.cost += tracker.costCall(t, argVals, val)
			}
		case InterpretableConstructor:
			tracker.stack.dropArgs(t.InitVals())
			switch t.Type() {
			case types.ListType:
				tracker.cost += common.ListCreateBaseCost
			case types.MapType:
				tracker.cost += common.MapCreateBaseCost
			default:
				tracker.cost += common.StructCreateBaseCost
			}
		}
		tracker.stack.push(val, id)

		if tracker.Limit != nil && tracker.cost > *tracker.Limit {
			panic(EvalCancelledError{Cause: CostLimitExceeded, Message: "operation cancelled: actual cost limit exceeded"})
		}
	}
	return observer
}

// CostTrackerOption configures the behavior of CostTracker objects.
type CostTrackerOption func(*CostTracker) error

// CostTrackerLimit sets the runtime limit on the evaluation cost during execution and will terminate the expression
// evaluation if the limit is exceeded.
func CostTrackerLimit(limit uint64) CostTrackerOption {
	return func(tracker *CostTracker) error {
		tracker.Limit = &limit
		return nil
	}
}

// PresenceTestHasCost determines whether presence testing has a cost of one or zero.
// Defaults to presence test has a cost of one.
func PresenceTestHasCost(hasCost bool) CostTrackerOption {
	return func(tracker *CostTracker) error {
		tracker.presenceTestHasCost = hasCost
		return nil
	}
}

// NewCostTracker creates a new CostTracker with a given estimator and a set of functional CostTrackerOption values.
func NewCostTracker(estimator ActualCostEstimator, opts ...CostTrackerOption) (*CostTracker, error) {
	tracker := &CostTracker{
		Estimator:           estimator,
		overloadTrackers:    map[string]FunctionTracker{},
		presenceTestHasCost: true,
	}
	for _, opt := range opts {
		err := opt(tracker)
		if err != nil {
			return nil, err
		}
	}
	return tracker, nil
}

// OverloadCostTracker binds an overload ID to a runtime FunctionTracker implementation.
//
// OverloadCostTracker instances augment or override ActualCostEstimator decisions, allowing for  versioned and/or
// optional cost tracking changes.
func OverloadCostTracker(overloadID string, fnTracker FunctionTracker) CostTrackerOption {
	return func(tracker *CostTracker) error {
		tracker.overloadTrackers[overloadID] = fnTracker
		return nil
	}
}

// FunctionTracker computes the actual cost of evaluating the functions with the given arguments and result.
type FunctionTracker func(args []ref.Val, result ref.Val) *uint64

// CostTracker represents the information needed for tracking runtime cost.
type CostTracker struct {
	Estimator           ActualCostEstimator
	overloadTrackers    map[string]FunctionTracker
	Limit               *uint64
	presenceTestHasCost bool

	cost  uint64
	stack refValStack
}

// ActualCost returns the runtime cost
func (c *CostTracker) ActualCost() uint64 {
	return c.cost
}

func (c *CostTracker) costCall(call InterpretableCall, args []ref.Val, result ref.Val) uint64 {
	var cost uint64
	if len(c.overloadTrackers) != 0 {
		if tracker, found := c.overloadTrackers[call.OverloadID()]; found {
			callCost := tracker(args, result)
			if callCost != nil {
				cost += *callCost
				return cost
			}
		}
	}
	if c.Estimator != nil {
		callCost := c.Estimator.CallCost(call.Function(), call.OverloadID(), args, result)
		if callCost != nil {
			cost += *callCost
			return cost
		}
	}
	// if user didn't specify, the default way of calculating runtime cost would be used.
	// if user has their own implementation of ActualCostEstimator, make sure to cover the mapping between overloadId and cost calculation
	switch call.OverloadID() {
	// O(n) functions
	case overloads.StartsWithString, overloads.EndsWithString, overloads.StringToBytes, overloads.BytesToString, overloads.ExtQuoteString, overloads.ExtFormatString:
		cost += uint64(math.Ceil(float64(c.actualSize(args[0])) * common.StringTraversalCostFactor))
	case overloads.InList:
		// If a list is composed entirely of constant values this is O(1), but we don't account for that here.
		// We just assume all list containment checks are O(n).
		cost += c.actualSize(args[1])
	// O(min(m, n)) functions
	case overloads.LessString, overloads.GreaterString, overloads.LessEqualsString, overloads.GreaterEqualsString,
		overloads.LessBytes, overloads.GreaterBytes, overloads.LessEqualsBytes, overloads.GreaterEqualsBytes,
		overloads.Equals, overloads.NotEquals:
		// When we check the equality of 2 scalar values (e.g. 2 integers, 2 floating-point numbers, 2 booleans etc.),
		// the CostTracker.actualSize() function by definition returns 1 for each operand, resulting in an overall cost
		// of 1.
		lhsSize := c.actualSize(args[0])
		rhsSize := c.actualSize(args[1])
		minSize := lhsSize
		if rhsSize < minSize {
			minSize = rhsSize
		}
		cost += uint64(math.Ceil(float64(minSize) * common.StringTraversalCostFactor))
	// O(m+n) functions
	case overloads.AddString, overloads.AddBytes:
		// In the worst case scenario, we would need to reallocate a new backing store and copy both operands over.
		cost += uint64(math.Ceil(float64(c.actualSize(args[0])+c.actualSize(args[1])) * common.StringTraversalCostFactor))
	// O(nm) functions
	case overloads.MatchesString:
		// https://swtch.com/~rsc/regexp/regexp1.html applies to RE2 implementation supported by CEL
		// Add one to string length for purposes of cost calculation to prevent product of string and regex to be 0
		// in case where string is empty but regex is still expensive.
		strCost := uint64(math.Ceil((1.0 + float64(c.actualSize(args[0]))) * common.StringTraversalCostFactor))
		// We don't know how many expressions are in the regex, just the string length (a huge
		// improvement here would be to somehow get a count the number of expressions in the regex or
		// how many states are in the regex state machine and use that to measure regex cost).
		// For now, we're making a guess that each expression in a regex is typically at least 4 chars
		// in length.
		regexCost := uint64(math.Ceil(float64(c.actualSize(args[1])) * common.RegexStringLengthCostFactor))
		cost += strCost * regexCost
	case overloads.ContainsString:
		strCost := uint64(math.Ceil(float64(c.actualSize(args[0])) * common.StringTraversalCostFactor))
		substrCost := uint64(math.Ceil(float64(c.actualSize(args[1])) * common.StringTraversalCostFactor))
		cost += strCost * substrCost

	default:
		// The following operations are assumed to have O(1) complexity.
		// - AddList due to the implementation. Index lookup can be O(c) the
		//    number of concatenated lists, but we don't track that is cost calculations.
		// - Conversions, since none perform a traversal of a type of unbound length.
		// - Computing the size of strings, byte sequences, lists and maps.
		// - Logical operations and all operators on fixed width scalars (comparisons, equality)
		// - Any functions that don't have a declared cost either here or in provided ActualCostEstimator.
		cost++

	}
	return cost
}

// actualSize returns the size of value
func (c *CostTracker) actualSize(value ref.Val) uint64 {
	if sz, ok := value.(traits.Sizer); ok {
		return uint64(sz.Size().(types.Int))
	}
	return 1
}

type stackVal struct {
	Val ref.Val
	ID  int64
}

// refValStack keeps track of values of the stack for cost calculation purposes
type refValStack []stackVal

func (s *refValStack) push(val ref.Val, id int64) {
	value := stackVal{Val: val, ID: id}
	*s = append(*s, value)
}

// TODO: Allowing drop and dropArgs to remove stack items above the IDs they are provided is a workaround. drop and dropArgs
// should find and remove only the stack items matching the provided IDs once all attributes are properly pushed and popped from stack.

// drop searches the stack for each ID and removes the ID and all stack items above it.
// If none of the IDs are found, the stack is not modified.
// WARNING: It is possible for multiple expressions with the same ID to exist (due to how macros are implemented) so it's
// possible that a dropped ID will remain on the stack.  They should be removed when IDs on the stack are popped.
func (s *refValStack) drop(ids ...int64) {
	for _, id := range ids {
		for idx := len(*s) - 1; idx >= 0; idx-- {
			if (*s)[idx].ID == id {
				*s = (*s)[:idx]
				break
			}
		}
	}
}

// dropArgs searches the stack for all the args by their IDs, accumulates their associated ref.Vals and drops any
// stack items above any of the arg IDs. If any of the IDs are not found the stack, false is returned.
// Args are assumed to be found in the stack in reverse order, i.e. the last arg is expected to be found highest in
// the stack.
// WARNING: It is possible for multiple expressions with the same ID to exist (due to how macros are implemented) so it's
// possible that a dropped ID will remain on the stack.  They should be removed when IDs on the stack are popped.
func (s *refValStack) dropArgs(args []Interpretable) ([]ref.Val, bool) {
	result := make([]ref.Val, len(args))
argloop:
	for nIdx := len(args) - 1; nIdx >= 0; nIdx-- {
		for idx := len(*s) - 1; idx >= 0; idx-- {
			if (*s)[idx].ID == args[nIdx].ID() {
				el := (*s)[idx]
				*s = (*s)[:idx]
				result[nIdx] = el.Val
				continue argloop
			}
		}
		return nil, false
	}
	return result, true
}