1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
|
# Language Definition
This page constitutes the reference for CEL. For a gentle introduction, see
[Intro](intro.md).
## Contents
- [Overview](#overview)
- [Syntax](#syntax)
- [Name Resolution](#name-resolution)
- [Values](#values)
- [Numeric Values](#numeric-values)
- [Enumerations](#enumerations)
- [String and Bytes Values](#string-and-bytes-values)
- [Aggregate Values](#aggregate-values)
- [Booleans and Null](#booleans-and-null)
- [Type Values](#type-values)
- [Abstract Types](#abstract-types)
- [Protocol Buffer Data Conversion](#protocol-buffer-data-conversion)
- [Dynamic Values](#dynamic-values)
- [JSON Data Conversion](#json-data-conversion)
- [Gradual Type Checking](#gradual-type-checking)
- [Evaluation](#evaluation)
- [Evaluation Environment](#evaluation-environment)
- [Runtime Errors](#runtime-errors)
- [Logical Operators](#logical-operators)
- [Macros](#macros)
- [Field Selection](#field-selection)
- [Performance](#performance)
- [Abstract Sizes](#abstract-sizes)
- [Time Complexity](#time-complexity)
- [Space Complexity](#space-complexity)
- [Macro Performance](#macro-performance)
- [Performance Limits](#performance-limits)
- [Functions](#functions)
- [Extension Functions](#extension-functions)
- [Receiver Call Style](#receiver-call-style)
- [Standard Definitions](#standard-definitions)
- [Equality and Ordering](#equality-and-ordering)
- [Overflow](#overflow)
- [Timezones](#timezones)
- [Regular Expressions](#regular-expressions)
- [List of Standard Definitions](#list-of-standard-definitions)
- [Appendix 1: Legacy Behavior](#appendix-1-legacy-behavior)
- [Enums as Ints](#enums-as-ints)
## Overview
In the taxonomy of programming languages, CEL is:
* **memory-safe:** programs cannot access unrelated memory, such as
out-of-bounds array indexes or use-after-free pointer dereferences;
* **side-effect-free:** a CEL program only computes an output from its inputs;
* **terminating:** CEL programs cannot loop forever;
* **strongly-typed:** values have a well-defined type, and operators and
functions check that their arguments have the expected types;
* **dynamically-typed:** types are associated with values, not with variables
or expressions, and type safety is enforced at runtime;
* **gradually-typed:** an optional type-checking phase before runtime can
detect and reject some programs which would violate type constraints.
## Syntax
The grammar of CEL is defined below, using `|` for alternatives, `[]` for
optional, `{}` for repeated, and `()` for grouping.
```grammar
Expr = ConditionalOr ["?" ConditionalOr ":" Expr] ;
ConditionalOr = [ConditionalOr "||"] ConditionalAnd ;
ConditionalAnd = [ConditionalAnd "&&"] Relation ;
Relation = [Relation Relop] Addition ;
Relop = "<" | "<=" | ">=" | ">" | "==" | "!=" | "in" ;
Addition = [Addition ("+" | "-")] Multiplication ;
Multiplication = [Multiplication ("*" | "/" | "%")] Unary ;
Unary = Member
| "!" {"!"} Member
| "-" {"-"} Member
;
Member = Primary
| Member "." IDENT ["(" [ExprList] ")"]
| Member "[" Expr "]"
| Member "{" [FieldInits] "}"
;
Primary = ["."] IDENT ["(" [ExprList] ")"]
| "(" Expr ")"
| "[" [ExprList] "]"
| "{" [MapInits] "}"
| LITERAL
;
ExprList = Expr {"," Expr} ;
FieldInits = IDENT ":" Expr {"," IDENT ":" Expr} ;
MapInits = Expr ":" Expr {"," Expr ":" Expr} ;
```
Implementations are required to support at least:
* 32 levels of nested expressions;
* 32 repetitions of self-recursive or repetitive rules, i.e.:
* 32 terms separated by `||` in a row;
* 32 terms separated by `&&` in a row;
* 32 relations in a row;
* 32 binary arithmetic operators of the same precedence in a row;
* 32 selection (`.`) operators in a row;
* 32 indexing (`[_]`) operators in a row;
* 32 function call arguments;
* list literals with 32 elements;
* map or message literals with 32 fields.
This grammar corresponds to the following operator precedence and associativity:
Precedence | Operator | Description | Associativity
---------- | --------------- | ------------------------------ | -------------
1 | () | Function call | Left-to-right
| . | Qualified name or field access |
| [] | Indexing |
| {} | Field initialization |
2 | - (unary) | Negation | Right-to-left
| ! | Logical NOT |
3 | * | Multiplication | Left-to-right
| / | Division |
| % | Remainder |
4 | + | Addition |
| - (binary) | Subtraction |
5 | == != < > <= >= | Relations |
| in | Inclusion test |
6 | && | Logical AND |
7 | \|\| | Logical OR |
8 | ?: | Conditional | Right-to-left
The lexis is defined below. As is typical, the `WHITESPACE` and `COMMENT`
productions are only used to recognize separate lexical elements and are ignored
by the grammar.
```
IDENT ::= [_a-zA-Z][_a-zA-Z0-9]* - RESERVED
LITERAL ::= INT_LIT | UINT_LIT | FLOAT_LIT | STRING_LIT | BYTES_LIT
| BOOL_LIT | NULL_LIT
INT_LIT ::= -? DIGIT+ | -? 0x HEXDIGIT+
UINT_LIT ::= INT_LIT [uU]
FLOAT_LIT ::= -? DIGIT* . DIGIT+ EXPONENT? | -? DIGIT+ EXPONENT
DIGIT ::= [0-9]
HEXDIGIT ::= [0-9abcdefABCDEF]
EXPONENT ::= [eE] [+-]? DIGIT+
STRING_LIT ::= [rR]? ( " ~( " | NEWLINE )* "
| ' ~( ' | NEWLINE )* '
| """ ~"""* """
| ''' ~'''* '''
)
BYTES_LIT ::= [bB] STRING_LIT
ESCAPE ::= \ [bfnrt"'\]
| \ x HEXDIGIT HEXDIGIT
| \ u HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT
| \ U HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT HEXDIGIT
| \ [0-3] [0-7] [0-7]
NEWLINE ::= \r\n | \r | \n
BOOL_LIT ::= "true" | "false"
NULL_LIT ::= "null"
RESERVED ::= BOOL_LIT | NULL_LIT | "in"
| "as" | "break" | "const" | "continue" | "else"
| "for" | "function" | "if" | "import" | "let"
| "loop" | "package" | "namespace" | "return"
| "var" | "void" | "while"
WHITESPACE ::= [\t\n\f\r ]+
COMMENT ::= '//' ~NEWLINE* NEWLINE
```
For the sake of a readable representation, the escape
sequences (`ESCAPE`) are kept implicit in string tokens. This means that strings
without the `r` or `R` (raw) prefix process `ESCAPE` sequences, while in strings
with the raw prefix they stay uninterpreted. See documentation of string
literals below.
The following identifiers are reserved due to their use as literal values or in
the syntax:
false in null true
The following identifiers are reserved to allow easier embedding of CEL into a
host language.
as break const continue else for function if import let loop package
namespace return var void while
In general it is a bad idea for those defining contexts or extensions to use
identifiers that are reserved words in programming languages which might embed
CEL.
### Name Resolution
A CEL expression is parsed in the scope of a specific protocol buffer package or
message, which controls the interpretation of names. The scope is set by the
application context of an expression. A CEL expression can contain simple names
as in `a` or qualified names as in `a.b`. The meaning of such expressions is a
combination of one or more of:
* Variables and Functions: some simple names refer to variables in the
execution context, standard functions, or other name bindings provided by
the CEL application.
* Field selection: appending a period and identifier to an expression could
indicate that we're accessing a field within a protocol buffer or map.
* Protocol buffer package names: a simple or qualified name could represent an
absolute or relative name in the protocol buffer package namespace. Package
names must be followed by a message type, enum type, or enum constant.
* Protocol buffer message types, enum types, and enum constants: following an
optional protocol buffer package name, a simple or qualified name could
refer to a message type, and enum type, or an enum constant in the
package's namespace.
Resolution works as follows. If `a.b` is a name to be resolved in the context of
a protobuf declaration with scope `A.B`, then resolution is attempted, in order,
as `A.B.a.b`, `A.a.b`, and finally `a.b`. To override this behavior, one can use
`.a.b`; this name will only be attempted to be resolved in the root scope, i.e.
as `a.b`.
If name qualification is mixed with field selection, the longest prefix of the
name which resolves in the current lexical scope is used. For example, if
`a.b.c` resolves to a message declaration, and `a.b` does so as well with `c` a
possible field selection, then `a.b.c` takes priority over the interpretation
`(a.b).c`. Explicit parentheses can be used to choose the field selection
interpretation.
## Values
Values in CEL represent any of the following:
Type | Description
------------- | ---------------------------------------------------------------
`int` | 64-bit signed integers
`uint` | 64-bit unsigned integers
`double` | 64-bit IEEE floating-point numbers
`bool` | Booleans (`true` or `false`)
`string` | Strings of Unicode code points
`bytes` | Byte sequences
`list` | Lists of values
`map` | Associative arrays with `int`, `uint`, `bool`, or `string` keys
`null_type` | The value `null`
message names | Protocol buffer messages
`type` | Values representing the types in the first column
### Numeric Values
CEL supports only 64-bit integers and 64-bit IEEE double-precision
floating-point. We only support positive, decimal integer literals; negative
integers are produced by the unary negation operator. Note that the integer 7 as
an `int` is a different value than 7 as a `uint`, which would be written `7u`.
Double-precision floating-point is also supported, and the integer 7 would be
written `7.`, `7.0`, `7e0`, or any equivalent representation using a decimal
point or exponent.
Note that currently there are no automatic arithmetic conversions for the
numeric types (`int`, `uint`, and `double`). The arithmetic operators typically
contain overloads for arguments of the same numeric type, but not for mixed-type
arguments. Therefore an expression like `1 + 1u` is going to fail to dispatch.
To perform mixed-type arithmetic, use explicit conversion functions such as
`uint(1) + 1u`. Such explicit conversions will maintain their meaning even if
arithmetic conversions are added in the future.
CEL provides no way to control the finer points of floating-point arithmetic,
such as expression evaluation, rounding mode, or exception handling. However,
any two not-a-number values will compare equal even if their underlying
properties are different.
### Enumerations
Each protocol buffer enumeration is its own CEL type. Enumerations have no
operations other than equality (and inequality), obtaining the type from a
value, and conversion to an `int`. (No conversion to string is supported, as
an enum value might have 0, 1, or many names.) Values of type `int` can be
converted to enum values as long as they are in the range `-2^31` to `2^31 - 1`.
A value of type `string` can be converted to enum values as long as it is a
defined for that enum.
### String and Bytes Values
Strings are sequences of Unicode code points. Bytes are sequences of octets
(eight-bit data).
Quoted string literals are delimited by either single- or double-quote
characters, where the closing delimiter must match the opening one, and can
contain any unescaped character except the delimiter or newlines (either CR or
LF).
Triple-quoted string literals are delimited by three single-quotes or three
double-quotes, and may contain any unescaped characters except for the delimiter
sequence. Again, the closing delimiter must match the opening one. Triple-quoted
strings may contain newlines.
Both sorts of strings can include escape sequences, described below.
If preceded by an `r` or `R` character, the string is a _raw_ string and does
not interpret escape sequences. Raw strings are useful for expressing strings
which themselves must use escape sequences, such as regular expressions or
program text.
Bytes literals are represented by string literals preceded by a `b` or `B`
character. The bytes literal is the sequence of bytes given by the UTF-8
representation of the string literal. In addition, the octal escape sequence are
interpreted as octet values rather than as Unicode code points. Both raw and
multiline string literals can be used for byte literals.
Escape sequences are a backslash (`\ `) followed by one of the following:
* A punctuation mark representing itself:
* `\ `: backslash
* `?`: question mark
* `"`: double quote
* `'`: single quote
* `` ` ``: backtick
* A code for whitespace:
* `a`: bell
* `b`: backspace
* `f`: form feed
* `n`: line feed
* `r`: carriage return
* `t`: horizontal tab
* `v`: vertical tab
* A `u` followed by four hexadecimal characters, encoding a Unicode code point
in the
[BMP](https://en.wikipedia.org/wiki/Plane_\(Unicode\)#Basic_Multilingual_Plane).
Characters in other Unicode planes can be represented with surrogate pairs.
Valid only for string literals.
* A `U` followed by eight hexadecimal characters, encoding a Unicode code
point. Valid only for string literals.
* A `x` or `X` followed by two hexadecimal characters. For strings, it denotes
the unicode code point. For bytes, it represents an octet value.
* Three octal digits, in the range `000` to `377`. For strings, it denotes the
unicode code point. For bytes, it represents an octet value.
Examples:
CEL Literal | Meaning
------------- | ---------------------------------------------------
`""` | Empty string
`'""'` | String of two double-quote characters
`'''x''x'''` | String of four characters "x''x"
`"\""` | String of one double-quote character
`"\\"` | String of one backslash character
`r"\\"` | String of two backslash characters
`b"abc"` | Byte sequence of 97, 98, 99
`b"ÿ"` | Sequence of bytes 195 and 191 (UTF-8 of ÿ)
`b"\303\277"` | Also sequence of bytes 195 and 191
`"\303\277"` | String of "ÿ" (code points 195, 191)
`"\377"` | String of "ÿ" (code point 255)
`b"\377"` | Sequence of byte 255 (_not_ UTF-8 of ÿ)
`"\xFF"` | String of "ÿ" (code point 255)
`b"\xFF"` | Sequence of byte 255 (_not_ UTF-8 of ÿ)
While strings must be sequences of valid Unicode code points, no Unicode
normalization is attempted on strings, as there are several normal forms, they
can be expensive to convert, and we don't know which is desired. If Unicode
normalization is desired, it should be performed outside of CEL, or done as a
custom extension function.
Likewise, no advanced collation is attempted on strings, as this depnds on the
normalization and can be locale-dependent. Strings are simply treated as
sequences of code points and are ordered with lexicographic ordering based on
the numeric value of the code points.
### Aggregate Values
Lists are ordered sequences of values.
Maps are a set of key values, and a mapping from these keys to arbitrary values.
Key values must be an allowed key type: `int`, `uint`, `bool`, or `string`. Thus
maps are the union of what's allowed in protocol buffer maps and JSON objects.
Note that the type checker uses a finer-grained notion of list and map types.
Lists are `list(A)` for the homogenous type `A` of list elements. Maps are
`map(K, V)` for maps with keys of type `K` and values of type `V`. The type
`dyn` is used for heterogeneous values See
[Gradual Type Checking](#gradual-type-checking). But these constraints are only
enforced within the type checker; at runtime, lists and maps can have
heterogeneous types.
Any protocol buffer message is a CEL value, and each message type is its own CEL
type, represented as its fully-qualified name.
A list can be denoted by the expression `[e1, e2, ..., eN]`, a map by `{ek1:
ev1, ek2: ev2, ..., ekN: evN}`, and a message by `M{f1: e1, f2: e2, ..., fN:
eN}`, where `M` must be a simple or qualified name which resolves to a message
type (see [Name Resolution](#name-resolution)). For a map, the entry keys are
sub-expressions that must evaluate to values of an allowed type (`int`, `uint`,
`bool`, or `string`). For a message, the field names are identifiers. It is an
error to have duplicate keys or field names. The empty list, map, and message
are `[]`, `{}`, and `M{}`, respectively.
See [Field Selection](#field-selection) for accessing elements of lists, maps,
and messages.
### Booleans and Null
CEL has `true` and `false` as the literals for the `bool` type, with the usual
meanings.
The null value is written `null`. It is used in conversion to and from protocol
buffer and JSON data, but otherwise has no built-in meaning in CEL. In
particular, null has its own type (`null_type`) and is not necessarily allowed
where a value of some other type is expected.
### Type Values
Every value in CEL has a runtime type which is itself a value. The standard
function `type(x)` returns the type of expression `x`.
As types are values, those values (`int`, `string`, etc.) also have a type: the
type `type`, which is an expression by itself which in turn also has type
`type`. So
* `type(1)` evaluates to `int`
* `type("a")` evaluates to `string`
* `type(1) == string` evaluates to `false`
* `type(type(1)) == type(string)` evaluates to `true`
### Abstract Types
A CEL implementation can add new types to the language. These types will be
given names in the same namespace as the other types, but will have no special
support in the language syntax. The only way to construct or use values of these
abstract types is through functions which the implementor must also provide.
Commonly, an abstract type will have a representation as a protocol buffer, so
that it can be stored or transmitted across a network. In this case, the
abstract type will be given the same name as the protocol buffer, which will
prevent CEL programs from being able to use that particular protocol buffer
message type; they will not be able to construct values of that type by message
expressions nor access the message fields. The abstract type remains abstract.
By default, CEL uses `google.protobuf.Timestamp` and `google.protobuf.Duration`
as abstract types. The standard functions provide ways to construct and
manipulate these values, but CEL programs cannot construct them with message
expressions or access their message fields.
### Protocol Buffer Data Conversion
Protocol buffers have a richer range of types than CEL, so Protocol buffer data
is converted to CEL data when read from a message field, and CEL data is
converted in the other direction when initializing a field. In general, protocol
buffer data can be converted to CEL without error, but range errors are possible
in the other direction.
Protocol Buffer Field Type | CEL Type
------------------------------------------------ | --------
int32, int64, sint32, sint64, sfixed32, sfixed64 | `int`
uint32, uint64, fixed32, fixed64 | `uint`
float, double | `double`
bool, string, bytes | same
enum E | E
repeated | `list`
map<K, V> | `map`
oneof | options expanded individually, at most one is set
message M | M, except for conversions below
Signed integers, unsigned integers, and floating point numbers are converted to
the singular CEL type of the same sort. The CEL type is capable of expressing
the full range of protocol buffer values. When converting from CEL to protocol
buffers, an out-of-range CEL value results in an error.
Boolean, string, and bytes types have identical ranges and are converted without
error.
Repeated fields are converted to CEL lists of converted values, preserving the
order. In the other direction, the CEL list elements must be of the right type
and value to be converted to the corresponding protocol buffer type. Similarly,
protocol buffer maps are converted to CEL maps, and CEL map keys and values must
have the right type and value to be converted in the other direction.
Oneof fields are represented by the translation of each of their options as a
separate field, but at most one of these fields will be "set", as detected by
the `has()` macro. See [Macros](#macros).
Since protocol buffer messages are first-class CEL values, message-valued fields
are used without conversion.
Every protocol buffer field has a default value, and there is no semantic
difference between a field set to this default value, and an unset field. For
message fields, there default value is just the unset state, and an unset
message field is distinct from one set to an empty (i.e. all-unset) message.
The `has()` macro (see [Macros](#macros)) tells whether a message field is set
(i.e. not unset, hence not set to the default value). If an unset field is
nevertheless selected, it evaluates to its default value, or if it is a message
field, it evaluates to an empty (i.e. all-unset) message. This allows
expressions to use iterative field selection to examine the state of fields in
deeply nested messages without needing to test whether every intermediate field
is set. (See exception for wrapper types, below.)
### Dynamic Values
CEL automatically converts certain protocol buffer messages in the
`google.protobuf` package to other types.
google.protobuf message | CEL Conversion
----------------------- | --------------
`Any` | dynamically converted to the contained message type, or error
`ListValue` | list of `Value` messages
`Struct` | map (with string keys, `Value` values)
`Value` | dynamically converted to the contained type (null, double, string, bool, `Struct`, or `ListValue`)
wrapper types | converted as eponymous field type
The wrapper types are `BoolValue`, `BytesValue`, `DoubleValue`, `FloatValue`,
`Int32Value`, `Int64Value`, `NullValue`, `StringValue`, `Uint32Value`, and
`Uint64Value`. Values of these wrapper types are converted to the obvious type.
Additionally, field selection of an unset message field of wrapper type will
evaluate to `null`, instead of the default message. This is an exception to the
usual evaluation of unset message fields.
Note that this implies some cascading conversions. An `Any` message might be
converted to a `Struct`, one of whose `Value`-typed values might be converted to
a `ListValue` of more values, and so on.
Also note that all of these conversions are dynamic at runtime, so CEL's static
type analysis cannot avoid the possibility of type-related errors in expressions
using these dynamic values.
## JSON Data Conversion
CEL can also work with JSON data. Since there is a natural correspondence of
most CEL data with protocol buffer data, and protocol buffers have a
[defined mapping](https://developers.google.com/protocol-buffers/docs/proto3#json)
to JSON, this creates a natural mapping of CEL to JSON. This creates an exact
bidirectional mapping between JSON types and a subset of CEL data:
JSON Type | CEL Type
--------- | -----------------------------------------------
`null` | `null`
Boolean | `bool`
Number | `double` (except infinities or NaN)
String | `string`
Array | `list` of bi-convertible elements
Object | `map` (with string keys, bi-convertible values)
We define JSON mappings for much of the remainder of CEL data, but note that
this data will not map back in to CEL as the same value:
CEL Data | JSON Data
------------------------------------------------------ | ---------
`int` | Number if in interoperable range, otherwise decimal String.
`uint` | Number if in interoperable range, otherwise decimal String.
double infinity | String `"Infinity"` or `"-Infinity"`
double NaN | String "NaN"
`bytes` | String of base64-encoded bytes
message | JSON conversion of protobuf message.
`list` of convertible elements | JSON Array of converted values
`list` with a non-convertible element | none
`map` with string keys and convertible values | JSON Object with converted values
`map` with a non-string key or a non-convertible value | none
`type` | none
The "interoperable" range of integer values is `-(2^53-1)` to `2^53 - 1`.
## Gradual Type Checking
CEL is a dynamically-typed language, meaning that the types of the values of the
variables and expressions might not be known until runtime. However, CEL has an
optional type-checking phase that takes annotation giving the types of all
variables and tries to deduce the type of the expression and of all its
sub-expressions. This is not always possible, due to the dynamic expansion of
certain messages like `Struct`, `Value`, and `Any` (see
[Dynamic Values](#dynamic-values)). However, if a CEL program does not use
dynamically-expanded messages, it can be statically type-checked.
The type checker uses a richer type system than the types of the dynamic values:
lists have a type parameter for the type of the elements, and maps have two
parameters for the types of keys and values, respectively. These richer types
preserve the stronger type guarantees that protocol buffer messages have. We can
infer stronger types from the standard functions, such as accessing list
elements or map fields. However, the `type()` function and dynamic dispatch to
particular function overloads only use the coarser types of the dynamic values.
The type checker also introduces the `dyn` type, which is the union of all other
types. Therefore the type checker could accept a list of heterogeneous values as
`dyn([1, 3.14, "foo"])`, which is given the type `list(dyn)`. The standard
function `dyn` has no effect at runtime, but signals to the type checker that
its argument should be considered of type `dyn`, `list(dyn)`, or a `dyn`-valued
map.
A CEL type checker attempts to identify possible runtime errors (see
[Runtime Errors](#runtime-errors)), particularly `no_matching_overload` and
`no_such_field`, ahead of runtime. It also serves to optimize execution speed
by narrowing down the number of possible matching overloads for a function
call, and by allowing for a more efficient (unboxed) runtime representation of
values.
By construction, a CEL expression that does not use the dynamic features coming
from `Struct`, `Value`, or `Any`, can be fully statically type checked and all
overloads can be resolved ahead of runtime.
If a CEL expression uses a mixture of dynamic and static features, a type
checker will still attempt to derive as much information as possible and
delegate undecidable type decisions to runtime.
The type checker is an optional phase of evaluation. Running the type checker
does not affect the result of evaluation, it can only reject expressions as
ill-typed in a given typing context.
## Evaluation
For a given evaluation environment, a CEL expression will deterministically
evaluate to either a value or an error. Here are how different expressions are
evaluated:
* **Literals:** the various kinds of literals (numbers, booleans, strings,
bytes, and `null`) evaluate to the values they represent.
* **Variables:** variables are looked up in the binding environment. An
unbound variable evaluates to an error.
* **List, Map, and Message expressions:** each sub-expression is evaluated and
if any sub-expression results in an error, this expression results in an
error. Otherwise, it results in the list, map, or message of the
sub-expression results, or an error if one of the values is of the wrong
type.
* **Field selection:** see [Field Selection](#field-selection).
* **Macros:** see [Macros](#macros).
* **Logical operators:** see [Logical Operators](#logical-operators).
* **Other operators:** operators are translated into specially-named functions
and the sub-expressions become their arguments, for instance `e1 + e2`
becomes `_+_(e1, e2)`, which is then evaluated as a normal function.
* **Normal functions:** all argument sub-expressions are evaluated and if any
results in an error, then this expression results in an error. Otherwise,
the function is identified by its name and dispatched to a particular
overload based on the types of the sub-expression values. See
[Functions](#functions).
Because CEL is free of side-effects, the order of evaluation among
sub-expressions is not guaranteed. If multiple subexpressions would evaluate to
errors causing the enclosing expression to evaluate to an error, it will
propagate one or more of the sub-expression erors, but it is not specified which
ones.
### Evaluation Environment
A CEL expression is parsed and evaluated in the scope of a particular protocol
buffer package, which controls name resolution as described above, and a binding
context, which binds identifiers to values, errors, and functions. A given
identifier has different meanings as a function name or as a variable, depending
on the use. For instance in the expression `size(requests) > size`, the first
`size` is a function, and the second is a variable.
The CEL implementation provides mechanisms for adding bindings of variable names
to either values or errors. The implementation will also provide function
bindings for at least all the standard functions listed below.
Some implementations might make use of a _context proto_, where a single
protocol buffer message represents all variable bindings: each field in the
message is a binding of the field name to the field value. This provides a
convenient encapsulation of the binding environment.
The evaluation environment can also specify the expected type of the result. If
the expected type is one of the protocol buffer wrapper messages, then CEL will
attempt to convert the result to the wrapper message, or will raise an error if
the conversion fails.
### Runtime Errors
In general, when a runtime error is produced, expression evaluation is
terminated; exceptions to this rule are discussed in
[Logical Operators](#logical-operators) and [Macros](#macros).
CEL provides the following built-in runtime errors:
* `no_matching_overload`: this function has no overload for the types of the
arguments.
* `no_such_field`: a map or message does not contain the desired field.
There is no in-language representation of errors, no generic way to raise them,
and no way to catch or bypass errors, except for the short-circuiting behavior
of the logical operators, and macros.
### Logical Operators
In the conditional operator `e ? e1 : e2`, evaluates to `e1` if `e` evaluates to
`true`, and `e2` if `e` evaluates to `false`. The untaken branch is presumed to
not be executed, though that is an implementation detail.
In the boolean operators `&&` and `||`: if any of their operands uniquely
determines the result (`false` for `&&` and `true` for `||`) the other operand
may or may not be evaluated, and if that evaluation produces a runtime error, it
will be ignored. This makes those operators commutative (in contrast to
traditional boolean short-circuit operators). The rationale for this behavior is
to allow the boolean operators to be mapped to indexed queries, and align better
with SQL semantics.
To get traditional left-to-right short-circuiting evaluation of logical
operators, as in C or other languages (also called "McCarthy Evaluation"), the
expression `e1 && e2` can be rewritten `e1 ? e2 : false`. Similarly, `e1 || e2`
can be rewritten `e1 ? true : e2`.
### Macros
CEL supports a small set of predefined macros. Macro invocations have the same
syntax as function calls, but follow different type checking rules and runtime
semantics than regular functions. An application of CEL opts-in to which macros
to support, selecting from the predefined set of macros. The currently available
macros are:
* `has(e.f)`: tests whether a field is available. See "Field Selection" below.
* `e.all(x, p)`: tests whether a predicate holds for all elements of a list
`e` or keys of a map `e`. Here `x` is a simple identifier to be used in `p`
which binds to the element or key. The `all()` macro combines per-element
predicate results with the "and" (`&&`) operator, so if any predicate
evaluates to false, the macro evaluates to false, ignoring any errors from
other predicates.
* `e.exists(x, p)`: like the `all()` macro, but combines the predicate results
with the "or" (`||`) operator.
* `e.exists_one(x,p)`: like the `exists()` macro, but evaluates to `true` only
if the predicate of exactly one element/key evaluates to `true`, and the
rest to `false`. Any other combination of boolean results evaluates to
`false`, and any predicate error causes the macro to raise an error.
* `e.map(x, t)` transforms a list `e` by taking each element `x` to the
element given by the expression `t`, which can use the variable `x`. For
instance, `[1, 2, 3].map(n, n * n)` evaluates to `[1, 4, 9]`. Any evaluation
error for any element causes the macro to raise an error. The `map()` macro
is not supported when `e` is a map.
* `e.filter(x, p)` returns the sublist of all elements `x` of list `e` which
evaluate to `true` in the predicate expression `p` (which can use variable
`x`). For instance, `[1, 2, 3].filter(i, i % 2 > 0)` evaluates to `[1, 3]`.
If no elements evaluate to `true`, the result is an empty list. Any
evaluation error for any element causes the macro to raise an error. The
`filter()` macro is not supported on maps.
### Field Selection
A field selection expression, `e.f`, can be applied both to messages and to
maps. For maps, selection is interpreted as the field being a string key.
The semantics depends on the type of the result of evaluating expression `e`:
1. If `e` evaluates to a message and `f` is not declared in this message, the runtime
error `no_such_field` is raised.
2. If `e` evaluates to a message and `f` is declared, but the field is not set, the
default value of the field's type will be produced. Note that this is `null`
for messages or the according primitive default value as determined by
proto2 or proto3 semantics.
3. If `e` evaluates to a map, then `e.f` is equivalent to `e['f']` (where `f`
is still being used as a meta-variable, e.g. the expression `x.foo` is
equivalent to the expression `x['foo']` when `x` evaluates to a map).
4. In all other cases, `e.f` evaluates to an error.
To test for the presence of a field, the boolean-valued macro `has(e.f)` can be
used.
1. If `e` evaluates to a map, then `has(e.f)` indicates whether the string `f`
is a key in the map (note that `f` must syntactically be an identifier).
2. If `e` evaluates to a message and `f` is not a declared field for the
message, `has(e.f)` raises a `no_such_field` error.
3. If `e` evaluates to a protocol buffers version 2 message and `f` is a
defined field:
- If `f` is a repeated field or map field, `has(e.f)` indicates whether
the field is non-empty.
- If `f` is a singular or oneof field, `has(e.f)` indicates
whether the field is set.
4. If `e` evaluates to a protocol buffers version 3 message and `f` is a
defined field:
- If `f` is a repeated field or map field, `has(e.f)` indicates whether
the field is non-empty.
- If `f` is a oneof or singular message field, `has(e.f)` indicates
whether the field is set.
- If `f` is some other singular field, `has(e.f)` indicates whether the
field's value is its default value (zero for numeric fields, false for
booleans, empty for strings and bytes).
5. In all other cases, `has(e.f)` evaluates to an error.
## Performance
Since one of the main applications for CEL is for execution of untrusted
expressions with reliable containment, the time and space cost of evaluation
is an essential part of the specification of the language. But we also want to
give considerable freedom in how to implement the language. To balance these
concerns, we specify only the time and space computational complexity of
language constructs and standard functions (see [Functions](#functions)).
CEL applications are responsible for noting the computational complexity of
any extension functions they provide.
### Abstract Sizes
Space and time complexity will be measured in terms of an abstract size
measurment of CEL expressions and values. The size of a CEL value depends on
its type:
* *string*: The size is its length, i.e. the number of code points, plus a
constant.
* *bytes*: The size is its length, i.e. the number of bytes, plus a constant.
* *list*: The size is the sum of sizes of its entries, plus a constant.
* *map*: The size is the sum of the key size plus the value size for all of
its entries, plus a constant.
* *message*: The size is the sum of the size of all fields, plus a constant.
* All other values have constant size.
The size of a CEL program is:
* *string literal*: The size of the resulting value.
* *bytes literal*: The size of the resulting value.
* Grammatical aggregates are the sum of the size of their components.
* Gramatical primitives other than above have constant size.
Thus, the size of a CEL program is bounded by either the length of the source
text string or the bytes of the proto-encoded AST.
The inputs to a CEL expression are the _bindings_ given to the evaluator and
the _literals_ within the expression itself.
### Time Complexity
Unless otherwise noted, the time complexity of an expression is the sum of the
time complexity of its sub-expressions, plus the sum of the sizes of the
sub-expression values, plus a constant.
For instance, an expression `x` has constant time complexity since it has no
sub-expressions. An expression `x != y` takes time proportional to the sum of
sizes of the bindings of `x` and `y`, plus a constant.
Some functions cost less than this:
* The conditional expression `_?_:_`, only evaluates one of the alternative
sub-expressions.
* For the `size()` function on lists and maps, the time is proportional to
the length of its input, not its total size (plus the time of the
sub-expression).
* The index operator on lists takes constant time (plus the time of the
sub-expressions).
* The select operator on messages takes constant time (plus the time of the
sub-expression).
Some functions take more time than this. The following functions take time
proportional to the _product_ of their input sizes (plus the time of the
sub-expressions):
* The index operator on maps.
* The select operator on maps.
* The in operator.
* The `contains`, `startsWith`, `endsWith`, and `matches` functions on
strings.
See below for the time cost of macros.
Implementations are free to provide a more performant implementation. For
instance, a hashing implementation of maps would make indexing/selection
faster, but we do not require such sophistication from all implementations.
### Space Complexity
Unless otherwise noted, the space complexity of an expression is the sum of the
space complexity of its sub-expressions, plus a constant. The exceptions are:
* *Literals*: Message, map, and list literals allocate new space for their
output.
* *Concatenation*: The `_+_` operator on lists and stings allocate new space
for their output.
See below for the space cost of macros.
We'll assume that bytes-to-string and string-to-bytes conversions do not need
to allocate new space.
### Macro Performance
Macros can take considerably more time and space than other constructs, and
can lead to exponential behavior when nested or chained. For instance,
```
[0,1].all(x,
[0,1].all(x,
...
[0,1].all(x, 1/0)...))
```
takes exponential (in the size of the expression) time to evaluate, while
```
["foo","bar"].map(x, [x+x,x+x]).map(x, [x+x,x+x])...map(x, [x+x,x+x])
```
is exponential in both time and space.
The time and space cost of macros is the cost of the range sub-expression `e`,
plus the follwing:
* `has(e.f)`: Space is constant.
* If `e` is a map, time is linear in size of `e`.
* If `e` is a message, time is constant.
* `e.all(x,p)`, `e.exists(x,p)`, and `e.exists_one(x,p)`
* Time is the sum of the time of `p` for each element of `e`.
* Space is constant.
* `e.map(x,t)`
* Time is the sum of time of`t` for each element of `e`.
* Space is the sum of space of `t` for each element of `e`, plus a
constant.
* `e.filter(x,t)`
* Time is the sum of time of `t` for each element of `e`.
* Space is the space of `e`.
### Performance Limits
Putting this all together, we can make the following statements about the cost
of evaluation. Let `P` be the non-literal size of the expression, `L` be the
size of the literals, `B` be the size of the bindings, and `I=B+L` be the total
size of the inputs.
* The macros other than `has()` are the only avenue for exponential
behavior. This can be curtailed by the implementation allowing applications
to set limits on the recursion or chaining of macros, or disable them
entirely.
* The concatenation operator `_+_` is the only operator that dramatically
increases the space complexity, with the program `x + x + ... + x` taking
time and space `O(B * P^2)`.
* The string-detection functions (`contains()` and friends) yield a boolean
result, thus cannot be nested to drive exponential or even higher
polynomial cost. We can bound the time cost by `O(B^2 * P)`, with a
limiting case being `x.contains(y) || x.contains(y) || ...`.
* The map indexing operators yield a smaller result than their input, and
thus are also limited in their ability to increase the cost. A particularly
bad case would be an expensive selection that returns a subcomponent that
contains the majority of the size of the aggregate, resulting in a time
cost of `O(P * I)`, and see below.
* Eliminating all of the above and using only default-cost functions, plus
aggregate literals, time and space are limited `O(P * I)`.
A limiting time example is `size(x) + size(x) + ...`.
A limiting time and space example is `[x, x, ..., x]`.
Note that custom function will alter this analysis if they are more expensive
than the default costs.
## Functions
CEL functions have no observable side-effects (there maybe side-effects like
logging or such which are not observable from CEL). The default argument
evaluation strategy for functions is strict, with exceptions from this rule
discussed in [Logical Operators](#logical-operators) and [Macros](#macros).
Functions are specified by a set of overloads. Each overload defines the number
and type of arguments and the type of the result, as well as an opaque
computation. Argument and result types can use type variables to express
overloads which work on lists and maps. At runtime, a matching overload is
selected and the according computation invoked. If no overload matches, the
runtime error `no_matching_overload` is raised (see also
[Runtime Errors](#errors)). For example, the standard function `size` is
specified by the following overloads:
<table border="1">
<tr>
<th rowspan="4">
size
</th>
<td>
(string) -> int
</td>
<td>
string length
</td>
</tr>
<tr>
<td>
(bytes) -> int
</td>
<td>
bytes length
</td>
</tr>
<tr>
<td>
(list(A)) -> int
</td>
<td>
list size
</td>
</tr>
<tr>
<td>
(map(A, B)) -> int
</td>
<td>
map size
</td>
</tr>
</table>
Overloads must have non-overlapping argument types, after erasure of all type
variables (similar as type erasure in Java). Thus an implementation can
implement overload resolution by simply mapping all argument types to a strong
hash.
Operator subexpressions are treated as calls to specially-named built-in
functions. For instance, the expression `e1 + e2` is dispatched to the function
`_+_` with arguments `e1` and `e2`. Note that since`_+_` is not an identifier,
there would be no way to write this as a normal function call.
See [Standard Definitions](#standard-definitions) for the list of all predefined
functions and operators.
### Extension Functions
It is possible to add extension functions to CEL, which then behave in no way
different than standard functions. The mechanism how to do this is
implementation dependent and usually highly curated. For example, an application
domain of CEL can add a new overload to the `size` function above, provided this
overload's argument types do not overlap with any existing overload. For
methodological reasons, CEL disallows to add overloads to operators.
### Receiver Call Style
A function overload can be declared to use receiver call-style, so it must be
called as `e1.f(e2)` instead of `f(e1, e2)`. Overloads with different call
styles are non-overlapping per definition, regardless of their types.
## Standard Definitions
All predefined operators, functions and constants are listed in the table below.
For each symbol, the available overloads are listed. Operator symbols use a
notation like `_+_` where `_` is a placeholder for an argument.
### Equality and Ordering
Equality (`_==_`) and inequality (`_!=_`) are defined for all types. Inequality
is the logical negation of equality, i.e. `e1 != e2` is the same as `!(e1 ==
e2)` for all expressions `e1` and `e2`.
Equality and inequality are homogeneous; comparing values of different runtime
types results in a runtime error. Thus `2 == 3` is false, but `2 == 2.0` is an
error.
For `double`, all not-a-number (`NaN`) values compare equal. This is different
than the usual semantics of floating-point numbers, but it is more consistent
with the usual expectations of reflexivity, and is more compatible with the
usual notions of equality on protocol buffers.
Lists are unequal if their lengths are different. Otherwise, for lists `a` and
`b` with length `N`, `a == b` is equivalent to
```
a[0] == b[0] && a[1] == b[1] && ... && a[N-1] == b[N-1]
```
Maps are unequal if their key sets are different, otherwise for maps `a` and
`b` with keyset `k1, k2, ..., kN`, `a == b` is equivalent to
```
a[k1] == b[k1] && a[k2] == b[k2] && ... && a[kN] == b[kN]
```
So for equality of both lists and maps this means:
- if the list lengths / map key sets are different, the result is false;
- if one or more element comparisons is false, the result is false;
- if all element comparisons are true, the result is true;
- otherwise the result is an error.
Ordering operators are defined for `int`, `uint`, `double`, `string`, `bytes`,
`bool`, as well as `timestamp` and `duration`. Strings obey lexicographic
ordering of the code points, and bytes obey lexicographic ordering of the byte
values. The ordering operators obey the usual algebraic properties, i.e. `e1 <=
e2` gives the same result as `!(e1 > e2)` as well as `(e1 < e2) || (e1 == e2)`
when the expressions involved do not have side effects.
### Overflow
Arithmetic operations raise an error when the results exceed the range of the
integer type (int, uint) or the timestamp or duration type. An error is also
raised for conversions which exceed the range of the target type.
### Timezones
Timezones are expressed in the following grammar:
```grammar
TimeZone = "UTC" | LongTZ | FixedTZ ;
LongTZ = ? list available at
http://joda-time.sourceforge.net/timezones.html ? ;
FixedTZ = ( "+" | "-" ) Digit Digit ":" Digit Digit ;
Digit = "0" | "1" | ... | "9" ;
```
Fixed timezones are explicit hour and minute offsets from UTC. Long timezone
names are like `Europe/Paris`, `CET`, or `US/Central`.
### Regular Expressions
Regular expressions follow the
[RE2 syntax](https://github.com/google/re2/wiki/Syntax). Regular expression
matches succeed if they match a substring of the argument. Use explicit anchors
(`^` and `$`) in the pattern to force full-string matching, if desired.
### List of Standard Definitions
TODO: automatically generate these descriptions from the cel-go implementation.
See [cel-go/issues/9](https://github.com/google/cel-go/issues/9).
<table style="width=100%" border="1">
<col width="15%">
<col width="40%">
<col width="45%">
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
<tr>
<th rowspan="1">
!_
</th>
<td>
(bool) -> bool
</td>
<td>
logical not
</td>
</tr>
<tr>
<th rowspan="2">
-_
</th>
<td>
(int) -> int
</td>
<td>
negation
</td>
</tr>
<tr>
<td>
(double) -> double
</td>
<td>
negation
</td>
</tr>
<tr>
<th rowspan="1">
_!=_
</th>
<td>
(A, A) -> bool
</td>
<td>
inequality
</td>
</tr>
<tr>
<th rowspan="2">
_%_
</th>
<td>
(int, int) -> int
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(uint, uint) -> uint
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<th rowspan="2">
_&&_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
logical and
</td>
</tr>
<tr>
<td>
(bool, ...) -> bool
</td>
<td>
logical and (variadic)
</td>
</tr>
<tr>
<th rowspan="3">
_*_
</th>
<td>
(int, int) -> int
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(uint, uint) -> uint
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(double, double) -> double
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<th rowspan="9">
_+_
</th>
<td>
(int, int) -> int
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(uint, uint) -> uint
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(double, double) -> double
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(string, string) -> string
</td>
<td>
String concatenation. Space and time cost proportional to the sum of the
input sizes.
</td>
</tr>
<tr>
<td>
(bytes, bytes) -> bytes
</td>
<td>
bytes concatenation
</td>
</tr>
<tr>
<td>
(list(A), list(A)) -> list(A)
</td>
<td>
List concatenation. Space and time cost proportional to the sum of the
input sizes.
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Duration) -> google.protobuf.Timestamp
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Timestamp) -> google.protobuf.Timestamp
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> google.protobuf.Duration
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<th rowspan="6">
_-_
</th>
<td>
(int, int) -> int
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(uint, uint) -> uint
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(double, double) -> double
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Timestamp) -> google.protobuf.Duration
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Duration) -> google.protobuf.Timestamp
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> google.protobuf.Duration
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<th rowspan="3">
_/_
</th>
<td>
(int, int) -> int
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(uint, uint) -> uint
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<td>
(double, double) -> double
</td>
<td>
arithmetic
</td>
</tr>
<tr>
<th rowspan="8">
_<=_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(int, int) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(uint, uint) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(double, double) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(string, string) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(bytes, bytes) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Timestamp) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<th rowspan="8">
_<_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(int, int) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(uint, uint) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(double, double) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(string, string) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(bytes, bytes) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Timestamp) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<th rowspan="1">
_==_
</th>
<td>
(A, A) -> bool
</td>
<td>
equality
</td>
</tr>
<tr>
<th rowspan="8">
_>=_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(int, int) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(uint, uint) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(double, double) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(string, string) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(bytes, bytes) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Timestamp) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<th rowspan="8">
_>_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(int, int) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(uint, uint) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(double, double) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(string, string) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(bytes, bytes) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp, google.protobuf.Timestamp) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<td>
(google.protobuf.Duration, google.protobuf.Duration) -> bool
</td>
<td>
ordering
</td>
</tr>
<tr>
<th rowspan="1">
_?_:_
</th>
<td>
(bool, A, A) -> A
</td>
<td>
The conditional operator. See above for evaluation semantics. Will
evaluate the test and only one of the remaining sub-expressions.
</td>
</tr>
<tr>
<th rowspan="2">
_[_]
</th>
<td>
(list(A), int) -> A
</td>
<td>
list indexing. Constant time cost.
</td>
</tr>
<tr>
<td>
(map(A, B), A) -> B
</td>
<td>
map indexing. For string keys, cost is proportional to the size of the
map keys times the size of the index string.
</td>
</tr>
<tr>
<th rowspan="2">
in
</th>
<td>
(A, list(A)) -> bool
</td>
<td>
list membership. Time cost proportional to the product of the size of
both arguments.
</td>
</tr>
<tr>
<td>
(A, map(A, B)) -> bool
</td>
<td>
map key membership. Time cost proportional to the product of the size of
both arguments.
</td>
</tr>
<tr>
<th rowspan="2">
_||_
</th>
<td>
(bool, bool) -> bool
</td>
<td>
logical or
</td>
</tr>
<tr>
<td>
(bool, ...) -> bool
</td>
<td>
logical or (variadic)
</td>
</tr>
<tr>
<th rowspan="1">
bool
</th>
<td>
type(bool)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<th rowspan="2">
bytes
</th>
<td>
type(bytes)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(string) -> bytes
</td>
<td>
type conversion
</td>
</tr>
<tr>
<th rowspan="1">
contains
</th>
<td>
string.(string) -> bool
</td>
<td>
Tests whether the string operand contains the substring. Time cost
proportional to the product of sizes of the arguments.
</td>
</tr>
<tr>
<th rowspan="4">
double
</th>
<td>
type(double)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(int) -> double
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(uint) -> double
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(string) -> double
</td>
<td>
type conversion
</td>
</tr>
<tr>
<th rowspan="1">
duration
</th>
<td>
(string) -> google.protobuf.Duration
</td>
<td>
type conversion, duration should end with "s", which stands for seconds
</td>
</tr>
<tr>
<th rowspan="2">
dyn
</th>
<td>
type(dyn)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(A) -> dyn
</td>
<td>
type conversion
</td>
</tr>
<tr>
<th rowspan="1">
endsWith
</th>
<td>
string.(string) -> bool
</td>
<td>
Tests whether the string operand ends with the suffix argument. Time cost
proportional to the product of the sizes of the arguments.
</td>
</tr>
<tr>
<th rowspan="2">
getDate
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get day of month from the date in UTC, one-based indexing
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get day of month from the date with timezone, one-based indexing
</td>
</tr>
<tr>
<th rowspan="2">
getDayOfMonth
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get day of month from the date in UTC, zero-based indexing
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get day of month from the date with timezone, zero-based indexing
</td>
</tr>
<tr>
<th rowspan="2">
getDayOfWeek
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get day of week from the date in UTC, zero-based, zero for Sunday
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get day of week from the date with timezone, zero-based, zero for Sunday
</td>
</tr>
<tr>
<th rowspan="2">
getDayOfYear
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get day of year from the date in UTC, zero-based indexing
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get day of year from the date with timezone, zero-based indexing
</td>
</tr>
<tr>
<th rowspan="2">
getFullYear
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get year from the date in UTC
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get year from the date with timezone
</td>
</tr>
<tr>
<th rowspan="3">
getHours
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get hours from the date in UTC, 0-23
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get hours from the date with timezone, 0-23
</td>
</tr>
<tr>
<td>
google.protobuf.Duration.() -> int
</td>
<td>
get hours from duration
</td>
</tr>
<tr>
<th rowspan="3">
getMilliseconds
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get milliseconds from the date in UTC, 0-999
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get milliseconds from the date with timezone, 0-999
</td>
</tr>
<tr>
<td>
google.protobuf.Duration.() -> int
</td>
<td>
milliseconds from duration, 0-999
</td>
</tr>
<tr>
<th rowspan="3">
getMinutes
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get minutes from the date in UTC, 0-59
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get minutes from the date with timezone, 0-59
</td>
</tr>
<tr>
<td>
google.protobuf.Duration.() -> int
</td>
<td>
get minutes from duration
</td>
</tr>
<tr>
<th rowspan="2">
getMonth
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get month from the date in UTC, 0-11
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get month from the date with timezone, 0-11
</td>
</tr>
<tr>
<th rowspan="3">
getSeconds
</th>
<td>
google.protobuf.Timestamp.() -> int
</td>
<td>
get seconds from the date in UTC, 0-59
</td>
</tr>
<tr>
<td>
google.protobuf.Timestamp.(string) -> int
</td>
<td>
get seconds from the date with timezone, 0-59
</td>
</tr>
<tr>
<td>
google.protobuf.Duration.() -> int
</td>
<td>
get seconds from duration
</td>
</tr>
<tr>
<th rowspan="6">
int
</th>
<td>
type(int)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(uint) -> int
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(double) -> int
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(string) -> int
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(enum E) -> int
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(google.protobuf.Timestamp) -> int
</td>
<td>
Convert timestamp to int64 in seconds since Unix epoch.
</td>
</tr>
<tr>
<th rowspan="1">
list
</th>
<td>
type(list(dyn))
</td>
<td>
type denotation
</td>
</tr>
<tr>
<th rowspan="1">
map
</th>
<td>
type(map(dyn, dyn))
</td>
<td>
type denotation
</td>
</tr>
<tr>
<th rowspan="2">
matches
</th>
<td>
(string, string) -> bool
</td>
<td>
Matches first argument against regular expression in second argument.
Time cost proportional to the product of the sizes of the arguments.
</td>
</tr>
<tr>
<td>
string.(string) -> bool
</td>
<td>
Matches the self argument against regular expression in first argument.
Time cost proportional to the product of the sizes of the arguments.
</td>
</tr>
<tr>
<th rowspan="1">
null_type
</th>
<td>
type(null)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<th rowspan="4">
size
</th>
<td>
(string) -> int
</td>
<td>
string length
</td>
</tr>
<tr>
<td>
(bytes) -> int
</td>
<td>
bytes length
</td>
</tr>
<tr>
<td>
(list(A)) -> int
</td>
<td>
list size. Time cost proportional to the length of the list.
</td>
</tr>
<tr>
<td>
(map(A, B)) -> int
</td>
<td>
map size. Time cost proportional to the number of entries.
</td>
</tr>
<tr>
<th rowspan="1">
startsWith
</th>
<td>
string.(string) -> bool
</td>
<td>
Tests whether the string operand starts with the prefix argument. Time
cost proportional to the product of the sizes of the arguments.
</td>
</tr>
<tr>
<th rowspan="5">
string
</th>
<td>
type(string)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(int) -> string
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(uint) -> string
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(double) -> string
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(bytes) -> string
</td>
<td>
type conversion
</td>
</tr>
<tr>
<th rowspan="1">
timestamp
</th>
<td>
(string) -> google.protobuf.Timestamp
</td>
<td>
Type conversion of strings to timestamps according to RFC3339. Example: "1972-01-01T10:00:20.021-05:00"
</td>
</tr>
<tr>
<th rowspan="2">
type
</th>
<td>
type(dyn)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(A) -> type(dyn)
</td>
<td>
returns type of value
</td>
</tr>
<tr>
<th rowspan="4">
uint
</th>
<td>
type(uint)
</td>
<td>
type denotation
</td>
</tr>
<tr>
<td>
(int) -> uint
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(double) -> uint
</td>
<td>
type conversion
</td>
</tr>
<tr>
<td>
(string) -> uint
</td>
<td>
type conversion
</td>
</tr>
<tr>
<th rowspan="2">
E (for fully-qualified enumeration E)
</th>
<td>
(int) -> enum E
</td>
<td>
type conversion when in int32 range, otherwise error
</td>
</tr>
<tr>
<td>
(string) -> enum E
</td>
<td>
type conversion for unqualified symbolic name, otherwise error
</td>
</tr>
</table>
## Appendix 1: Legacy Behavior
### Enums as Ints
In many pre-1.0 implementations, protocol buffer enums are all treated as CEL
type `int`, and are legal arguments whenever an `int` is expected. Int values
in the range `-2**31` to `2**31 - 1` can be used whenever an enum is expected.
Values outside that range will raise an error. There are no standard functions
for conversion from strings, and no conversion to `int` is needed.
```
type(google.protobuf.Field{}.kind) # was int, now google.protobuf.Field.Kind
```
|