1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package envcheck checks runtime support of declarations.
//
// A set of checker declarations is scanned to produce a set of CEL
// parse trees, each of which is then sent to the runtime.
//
// Identifier declarations are compiled to an expression of just that
// identifiers. For instance, the "int" type identifier produces:
//
// int
//
// Function declarations are compiled to a separate expression for
// each overload. The expression is an invocation of the overload with
// "zeroish" arguments of the appropriate type. The zeroish arguments
// are:
//
// int 0
// uint 0u
// double 0.0
// bool false
// string ""
// bytes b""
// null_type null
// type type
// list<A> []
// map<A,B> {}
// enum E 0
// message M M{}
//
// For instance, the "_/_" function with overloads
//
// _/_: (int, int) -> int
// _/_: (uint, uint) -> uint
// _/_: (double, double) -> double
//
// compiles to the expressions
//
// (0)/(0)
// (0u)/(0u)
// (0.0)/(0.0)
//
// which are then evaluated.
//
// This test suite does not check that the overloads are implemented
// correctly, only that they are implemented at all. The test will pass
// unless the expression evaluates (with no bindings) to any result or
// error other than "no_matching_overload". For instance, the first
// two expressions for _/_ will generate division-by-zero errors, but
// this will pass the test.
//
package envcheck
import (
"context"
"fmt"
"testing"
"github.com/google/cel-spec/tools/celrpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"google.golang.org/protobuf/proto"
confpb "google.golang.org/genproto/googleapis/api/expr/conformance/v1alpha1"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
spb "google.golang.org/genproto/googleapis/rpc/status"
)
// runConfig holds the client stub for the server for the runtime.
type runConfig struct {
client celrpc.ConfClient
}
var (
// noOverload holds the proto representation of the "no_matching_overload" error.
noOverload = &exprpb.ExprValue{Kind: &exprpb.ExprValue_Error{
Error: &exprpb.ErrorSet{Errors: []*spb.Status{
status.New(codes.InvalidArgument, "no_matching_overload").Proto(),
}},
}}
)
// exprGen is an expression generator. It accepts the next expression Id to use and returns
// an Expr proto and the next unused expression Id.
type exprGen func(int64) (*exprpb.Expr, int64)
// genExpr runs an expression generator with 0 as the first expression Id.
func genExpr(gen exprGen) *exprpb.Expr {
e, _ := gen(int64(0))
return e
}
// exprNil generates a nil pointer as its Expr, not consuming any expression Ids.
// It's useful for uniform handling of nil values when construction Exprs.
var exprNil exprGen = func(id int64) (*exprpb.Expr, int64) {
return nil, id
}
// exprIdent generates an Ident expression.
func exprIdent(name string) exprGen {
return func(id int64) (*exprpb.Expr, int64) {
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_IdentExpr{
IdentExpr: &exprpb.Expr_Ident{
Name: name,
},
},
}, id + 1
}
}
// exprConst generates a Constant (literal) expression.
func exprConst(c *exprpb.Constant) exprGen {
return func(id int64) (*exprpb.Expr, int64) {
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_ConstExpr{ConstExpr: c},
}, id + 1
}
}
// exprCall generates a Call expression with the given arguments.
func exprCall(f string, args ...exprGen) exprGen {
return exprCallTarget(f, exprNil, args...)
}
// exprCallTarget generates a Call expression with the given target and arguments.
func exprCallTarget(f string, target exprGen, args ...exprGen) exprGen {
return func(id int64) (*exprpb.Expr, int64) {
tExp, id := target(id)
var argExp []*exprpb.Expr
for _, arg := range args {
e, i := arg(id)
argExp = append(argExp, e)
id = i
}
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_CallExpr{
CallExpr: &exprpb.Expr_Call{
Target: tExp,
Function: f,
Args: argExp,
},
},
}, id + 1
}
}
// emptyList generates an empty CreateList expression.
var emptyList exprGen = func(id int64) (*exprpb.Expr, int64) {
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_ListExpr{
ListExpr: &exprpb.Expr_CreateList{},
},
}, id + 1
}
// exprEmptyStruct generates an empty CreateStruct expression. The messageName may be nil,
// indicating an empty map.
func exprEmptyStruct(messageName string) exprGen {
return func(id int64) (*exprpb.Expr, int64) {
return &exprpb.Expr{
Id: id,
ExprKind: &exprpb.Expr_StructExpr{
StructExpr: &exprpb.Expr_CreateStruct{
MessageName: messageName,
},
},
}, id + 1
}
}
// emptyMap generates a CreateStruct expression for an empty map.
var emptyMap = exprEmptyStruct("")
// Generators for zero-ish constants.
var (
zeroConstBool = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_BoolValue{}})
zeroConstInt = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_Int64Value{}})
zeroConstUint = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_Uint64Value{}})
zeroConstDouble = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_DoubleValue{}})
zeroConstString = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_StringValue{}})
zeroConstBytes = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_BytesValue{}})
zeroConstNull = exprConst(&exprpb.Constant{ConstantKind: &exprpb.Constant_NullValue{}})
)
// zeroValuePrimitive returns a generator for the zero-ish value of a primitive type.
func zeroValuePrimitive(p exprpb.Type_PrimitiveType) (exprGen, error) {
switch p {
case exprpb.Type_BOOL:
return zeroConstBool, nil
case exprpb.Type_INT64:
return zeroConstInt, nil
case exprpb.Type_UINT64:
return zeroConstUint, nil
case exprpb.Type_DOUBLE:
return zeroConstDouble, nil
case exprpb.Type_STRING:
return zeroConstString, nil
case exprpb.Type_BYTES:
return zeroConstBytes, nil
default:
return nil, fmt.Errorf("unknown primitive type: %v", p)
}
}
// zeroValueWellKnown returns a generator for the zero-ish value of a well-known type.
func zeroValueWellKnown(w exprpb.Type_WellKnownType) (exprGen, error) {
switch w {
case exprpb.Type_ANY:
return zeroConstInt, nil
case exprpb.Type_TIMESTAMP:
return exprCall("timestamp", zeroConstInt), nil
case exprpb.Type_DURATION:
return exprCall("duration", zeroConstInt), nil
default:
return nil, fmt.Errorf("unknown well known type: %v", w)
}
}
// zeroValue returns a generator for the zero-ish value of a Type.
func zeroValue(tp *exprpb.Type) (exprGen, error) {
switch t := tp.TypeKind.(type) {
case *exprpb.Type_Dyn:
return zeroConstInt, nil
case *exprpb.Type_Null:
return zeroConstNull, nil
case *exprpb.Type_Primitive:
return zeroValuePrimitive(t.Primitive)
case *exprpb.Type_Wrapper:
return zeroValuePrimitive(t.Wrapper)
case *exprpb.Type_WellKnown:
return zeroValueWellKnown(t.WellKnown)
case *exprpb.Type_ListType_:
return emptyList, nil
case *exprpb.Type_MapType_:
return emptyMap, nil
case *exprpb.Type_Function:
return nil, fmt.Errorf("bad_type_function")
case *exprpb.Type_MessageType:
return exprEmptyStruct(t.MessageType), nil
case *exprpb.Type_TypeParam:
return zeroConstInt, nil
case *exprpb.Type_Type:
return exprIdent("type"), nil
case *exprpb.Type_Error:
return nil, fmt.Errorf("error type")
case *exprpb.Type_AbstractType_:
return nil, fmt.Errorf("abstract type %s", t.AbstractType.Name)
default:
return nil, fmt.Errorf("unknown type kind: %v", tp.GetTypeKind())
}
}
// overloadExpr returns the generator for a call to a given overload with zero-ish arguments.
func overloadExpr(name string, o *exprpb.Decl_FunctionDecl_Overload) (exprGen, error) {
var args []exprGen
for _, param := range o.Params {
arg, err := zeroValue(param)
if err != nil {
return nil, err
}
args = append(args, arg)
}
if o.IsInstanceFunction && len(args) > 0 {
return exprCallTarget(name, args[0], args[1:]...), nil
}
return exprCall(name, args...), nil
}
// TestDecl checks whether the runtime supports a given declaration by generating
// a test expression and running it.
func (r *runConfig) TestDecl(t *testing.T, decl *exprpb.Decl) {
switch d := decl.DeclKind.(type) {
case *exprpb.Decl_Ident:
// For identifiers, the name itself is a suitable program.
prog := genExpr(exprIdent(decl.Name))
result, err := r.runProg(decl.Name, prog)
if err != nil {
t.Fatal(err)
}
// Any value is okay, any error is a problem.
_, ok := result.Kind.(*exprpb.ExprValue_Value)
if !ok {
t.Errorf("got %v, want value", result)
}
case *exprpb.Decl_Function:
for _, o := range d.Function.Overloads {
t.Run(o.OverloadId, func(tt *testing.T) {
g, err := overloadExpr(decl.Name, o)
if err != nil {
tt.Fatal(err)
}
result, err := r.runProg(o.OverloadId, genExpr(g))
if err != nil {
tt.Fatal(err)
}
// Only the "no_matching_overload" error is a problem.
if proto.Equal(result, noOverload) {
tt.Error("no matching overload")
}
})
}
default:
t.Errorf("unknown decl kind %v", decl.DeclKind)
}
}
// runProg evaluates a given expression on the runtime server and returns the result.
func (r *runConfig) runProg(name string, prog *exprpb.Expr) (*exprpb.ExprValue, error) {
parsedExpr := &exprpb.ParsedExpr{
Expr: prog,
SourceInfo: &exprpb.SourceInfo{},
}
ereq := confpb.EvalRequest{
ExprKind: &confpb.EvalRequest_ParsedExpr{ParsedExpr: parsedExpr},
}
eres, err := r.client.Eval(context.Background(), &ereq)
if err != nil {
return nil, fmt.Errorf("fatal eval RPC error for %s: %v", name, err)
}
if eres == nil || eres.Result == nil {
return nil, fmt.Errorf("empty eval response for %s", name)
}
return eres.Result, nil
}
|