1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/* -*- indent-tabs-mode: nil -*- */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <stdint.h>
#include <string>
#include "log/signer.h"
#include "log/test_signer.h"
#include "log/verifier.h"
#include "proto/cert_serializer.h"
#include "proto/ct.pb.h"
#include "proto/serializer.h"
#include "util/testing.h"
#include "util/util.h"
using cert_trans::Verifier;
using ct::DigitallySigned;
using std::string;
namespace cert_trans {
namespace {
const char kTestString[] = "abc";
class SignerVerifierTest : public ::testing::Test {
protected:
SignerVerifierTest() : signer_(NULL), verifier_(NULL) {
}
void SetUp() {
signer_ = TestSigner::DefaultSigner();
verifier_ = TestSigner::DefaultVerifier();
}
~SignerVerifierTest() {
delete signer_;
delete verifier_;
}
static string SerializedSignature(const DigitallySigned& signature) {
string serialized_sig;
CHECK_EQ(cert_trans::serialization::SerializeResult::OK,
Serializer::SerializeDigitallySigned(signature, &serialized_sig));
return serialized_sig;
}
Signer* signer_;
Verifier* verifier_;
};
// Check that the keys of the signer and verifier are consistent.
TEST_F(SignerVerifierTest, KeyID) {
EXPECT_FALSE(signer_->KeyID().empty());
EXPECT_EQ(signer_->KeyID(), verifier_->KeyID());
}
// TODO(ekasper): Check the example ECDSA signature for P-256, see
// http://www.nsa.gov/ia/_files/ecdsa.pdf, section D.1.
// Check that a well-known signature on well-know data verifies.
TEST_F(SignerVerifierTest, CheckSignature) {
DigitallySigned signature;
string data;
signature.set_hash_algorithm(DigitallySigned::SHA256);
signature.set_sig_algorithm(DigitallySigned::ECDSA);
TestSigner::SetDefaults(&data, signature.mutable_signature());
EXPECT_EQ(Verifier::OK, verifier_->Verify(data, signature));
}
// Check that a signature on a test string verifies. Also check that
// successive signatures of the same data are different.
TEST_F(SignerVerifierTest, SignAndVerify) {
// Sign the test string.
DigitallySigned signature1;
signer_->Sign(kTestString, &signature1);
// Check that the signature verifies.
EXPECT_EQ(DigitallySigned::SHA256, signature1.hash_algorithm());
EXPECT_EQ(DigitallySigned::ECDSA, signature1.sig_algorithm());
EXPECT_EQ(Verifier::OK, verifier_->Verify(kTestString, signature1));
// Sign the test string a second time.
DigitallySigned signature2;
signer_->Sign(kTestString, &signature2);
// Check that the signature is different but still verifies.
EXPECT_NE(signature1.signature(), signature2.signature());
EXPECT_EQ(DigitallySigned::SHA256, signature2.hash_algorithm());
EXPECT_EQ(DigitallySigned::ECDSA, signature2.sig_algorithm());
EXPECT_EQ(Verifier::OK, verifier_->Verify(kTestString, signature2));
}
// Check various error cases.
TEST_F(SignerVerifierTest, Errors) {
DigitallySigned signature;
string data;
TestSigner::SetDefaults(&data, signature.mutable_signature());
signature.set_hash_algorithm(DigitallySigned::SHA256);
signature.set_sig_algorithm(DigitallySigned::ECDSA);
EXPECT_EQ(Verifier::OK, verifier_->Verify(data, signature));
const string good_signature = signature.signature();
// Empty signature.
signature.clear_signature();
EXPECT_EQ(Verifier::INVALID_SIGNATURE, verifier_->Verify(data, signature));
// Signature too short.
signature.set_signature(
good_signature.substr(0, good_signature.length() - 1));
EXPECT_EQ(Verifier::INVALID_SIGNATURE, verifier_->Verify(data, signature));
// Signature too long.
// OpenSSL ECDSA Verify parses *up to* a given number of bytes,
// rather than exactly the given number of bytes, and hence appending
// garbage in the end still results in a valid signature.
signature.set_signature(good_signature);
signature.mutable_signature()->append(1, 'c');
// EXPECT_EQ(Verifier::INVALID_SIGNATURE, verifier_->Verify(data,
// signature));
// Flip the lsb of each byte one by one.
signature.set_signature(good_signature);
for (size_t i = 0; i < good_signature.size(); ++i) {
signature.mutable_signature()->at(i) ^= 0x01;
}
EXPECT_EQ(Verifier::INVALID_SIGNATURE, verifier_->Verify(data, signature));
// Check algorithm mismatch.
signature.set_signature(good_signature);
signature.set_hash_algorithm(DigitallySigned::MD5);
signature.set_sig_algorithm(DigitallySigned::ECDSA);
EXPECT_EQ(Verifier::HASH_ALGORITHM_MISMATCH,
verifier_->Verify(data, signature));
signature.set_hash_algorithm(DigitallySigned::SHA256);
signature.set_sig_algorithm(DigitallySigned::RSA);
EXPECT_EQ(Verifier::SIGNATURE_ALGORITHM_MISMATCH,
verifier_->Verify(data, signature));
// Change data.
data.append("foo");
signature.set_sig_algorithm(DigitallySigned::ECDSA);
EXPECT_EQ(Verifier::INVALID_SIGNATURE, verifier_->Verify(data, signature));
}
} // namespace
} // namespace cert_trans
int main(int argc, char** argv) {
cert_trans::test::InitTesting(argv[0], &argc, &argv, true);
ConfigureSerializerForV1CT();
return RUN_ALL_TESTS();
}
|