File: compact_merkle_tree.cc

package info (click to toggle)
golang-github-google-certificate-transparency 0.0~git20160709.0.0f6e3d1~ds1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 5,676 kB
  • sloc: cpp: 35,278; python: 11,838; java: 1,911; sh: 1,885; makefile: 950; xml: 520; ansic: 225
file content (167 lines) | stat: -rw-r--r-- 5,212 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "merkletree/compact_merkle_tree.h"

#include <assert.h>
#include <glog/logging.h>
#include <stddef.h>
#include <string>
#include <vector>

#include "merkletree/merkle_tree_math.h"

using cert_trans::MerkleTreeInterface;
using std::move;
using std::string;
using std::unique_ptr;

CompactMerkleTree::CompactMerkleTree(unique_ptr<SerialHasher> hasher)
    : MerkleTreeInterface(),
      treehasher_(move(hasher)),
      leaf_count_(0),
      leaves_processed_(0),
      level_count_(0),
      root_(treehasher_.HashEmpty()) {
}

CompactMerkleTree::CompactMerkleTree(MerkleTree* model,
                                     unique_ptr<SerialHasher> hasher)
    : MerkleTreeInterface(),
      tree_(std::max<int64_t>(0, CHECK_NOTNULL(model)->LevelCount() - 1)),
      treehasher_(move(hasher)),
      leaf_count_(model->LeafCount()),
      leaves_processed_(0),
      level_count_(model->LevelCount()),
      root_(treehasher_.HashEmpty()) {
  if (model->LeafCount() == 0) {
    return;
  }
  // Get the inclusion proof path to the last entry in the tree, which by
  // definition must consist purely of left-hand nodes.
  std::vector<string> path(model->PathToCurrentRoot(model->LeafCount()));
  if (!path.empty()) {
    /* We have to do some juggling here as tree_[] differs from our MerkleTree
    // structure in that incomplete right-hand subtrees 'fall-through' to lower
    // levels:
    //
    // MerkleTree structure for 3 leaves:
    //      R
    //     / \
    //    /   \
    //   AB    c
    //  / \
    // a   b
    //
    // Compact tree represents this as:
    //      R
    //     / \
    //    /   \
    //   AB    .
    //         |
    //         c
    // or:
    // tree_[1] = AB
    // tree_[0] = c  // (c) has "fallen-through" to the lowest level
    //
    // The inclusion proof path for the right-most entry effectively
    // describes the state of the tree immediately before the right-most
    // entry was added.
    // Since the inclusion proof path consists exclusively of left-hand
    // nodes and each entry in the path covers the maximum sub-tree possible,
    // we can use this to directly construct the Compact respresentation of
    // the tree before the newest entry was added.
    */

    // index into tree_, starting at the leaf level:
    int level(0);
    std::vector<string>::const_iterator i = path.begin();
    size_t size_of_previous_tree(model->LeafCount() - 1);
    for (; size_of_previous_tree != 0; size_of_previous_tree >>= 1) {
      if ((size_of_previous_tree & 1) != 0) {
        // if the level'th bit in the previous tree size is set, then we have
        // a proof path entry for this level (because proof entries cover the
        // maximum possible sub-tree.)
        tree_[level] = *i;
        i++;
      }
      level++;
    }
    assert(i == path.end());
  }

  // Now tree_ should contain a representation of the tree state just before
  // the last entry was added, so we PushBack the final right-hand entry
  // here, which will perform any recalculations necessary to reach the final
  // tree.
  PushBack(0, model->LeafHash(model->LeafCount()));
  assert(model->CurrentRoot() == CurrentRoot());
  assert(model->LeafCount() == LeafCount());
  assert(model->LevelCount() == LevelCount());
}


CompactMerkleTree::CompactMerkleTree(const CompactMerkleTree& other,
                                     unique_ptr<SerialHasher> hasher)
    : tree_(other.tree_),
      treehasher_(move(hasher)),
      leaf_count_(other.leaf_count_),
      leaves_processed_(other.leaves_processed_),
      level_count_(other.level_count_),
      root_(other.root_) {
}

CompactMerkleTree::~CompactMerkleTree() {
}


size_t CompactMerkleTree::AddLeaf(const string& data) {
  return AddLeafHash(treehasher_.HashLeaf(data));
}

size_t CompactMerkleTree::AddLeafHash(const string& hash) {
  PushBack(0, hash);
  // Update level count: a k-level tree can hold 2^{k-1} leaves,
  // so increment level count every time we overflow a power of two.
  // Do not update the root; we evaluate the tree lazily.
  if (MerkleTreeMath::IsPowerOfTwoPlusOne(++leaf_count_))
    ++level_count_;
  return leaf_count_;
}

string CompactMerkleTree::CurrentRoot() {
  UpdateRoot();
  return root_;
}

void CompactMerkleTree::PushBack(size_t level, string node) {
  assert(node.size() == treehasher_.DigestSize());
  if (tree_.size() <= level) {
    // First node at a new level.
    tree_.push_back(node);
  } else if (tree_[level].empty()) {
    // Lone left sibling.
    tree_[level] = node;
  } else {
    // Left sibling waiting: hash together and propagate up.
    PushBack(level + 1, treehasher_.HashChildren(tree_[level], node));
    tree_[level].clear();
  }
}

void CompactMerkleTree::UpdateRoot() {
  if (leaves_processed_ == LeafCount())
    return;

  string right_sibling;

  for (size_t level = 0; level < tree_.size(); ++level) {
    if (!tree_[level].empty()) {
      // A lonely left sibling gets pulled up as a right sibling.
      if (right_sibling.empty())
        right_sibling = tree_[level];
      else
        right_sibling = treehasher_.HashChildren(tree_[level], right_sibling);
    }
  }

  root_ = right_sibling;
  leaves_processed_ = LeafCount();
}