File: merkle_tree.cc

package info (click to toggle)
golang-github-google-certificate-transparency 0.0~git20160709.0.0f6e3d1~ds1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 5,676 kB
  • sloc: cpp: 35,278; python: 11,838; java: 1,911; sh: 1,885; makefile: 950; xml: 520; ansic: 225
file content (291 lines) | stat: -rw-r--r-- 9,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#include "merkletree/merkle_tree.h"

#include <assert.h>
#include <stddef.h>
#include <string>
#include <vector>

#include "merkletree/merkle_tree_math.h"

using cert_trans::MerkleTreeInterface;
using std::move;
using std::string;
using std::unique_ptr;

MerkleTree::MerkleTree(unique_ptr<SerialHasher> hasher)
    : MerkleTreeInterface(),
      treehasher_(move(hasher)),
      leaves_processed_(0),
      level_count_(0) {
}

MerkleTree::~MerkleTree() {
}

size_t MerkleTree::AddLeaf(const string& data) {
  return AddLeafHash(treehasher_.HashLeaf(data));
}

size_t MerkleTree::AddLeafHash(const string& hash) {
  if (LazyLevelCount() == 0) {
    AddLevel();
    // The first leaf hash is also the first root.
    leaves_processed_ = 1;
  }
  PushBack(0, hash);
  size_t leaf_count = LeafCount();
  // Update level count: a k-level tree can hold 2^{k-1} leaves,
  // so increment level count every time we overflow a power of two.
  // Do not update the root; we evaluate the tree lazily.
  if (MerkleTreeMath::IsPowerOfTwoPlusOne(leaf_count))
    ++level_count_;
  // Return the current leaf count.
  return leaf_count;
}

string MerkleTree::CurrentRoot() {
  return RootAtSnapshot(LeafCount());
}

string MerkleTree::RootAtSnapshot(size_t snapshot) {
  if (snapshot == 0)
    return treehasher_.HashEmpty();
  size_t leaf_count = LeafCount();
  if (snapshot > leaf_count)
    return string();
  if (snapshot >= leaves_processed_)
    return UpdateToSnapshot(snapshot);
  // snapshot < leaves_processed_: recompute the snapshot root.
  return RecomputePastSnapshot(snapshot, 0, NULL);
}

std::vector<string> MerkleTree::PathToCurrentRoot(size_t leaf) {
  return PathToRootAtSnapshot(leaf, LeafCount());
}

std::vector<string> MerkleTree::PathToRootAtSnapshot(size_t leaf,
                                                     size_t snapshot) {
  std::vector<string> path;
  size_t leaf_count = LeafCount();
  if (leaf > snapshot || snapshot > leaf_count || leaf == 0)
    return path;
  return PathFromNodeToRootAtSnapshot(leaf - 1, 0, snapshot);
}

std::vector<string> MerkleTree::SnapshotConsistency(size_t snapshot1,
                                                    size_t snapshot2) {
  std::vector<string> proof;
  size_t leaf_count = LeafCount();
  if (snapshot1 == 0 || snapshot1 >= snapshot2 || snapshot2 > leaf_count)
    return proof;

  size_t level = 0;
  // Rightmost node in snapshot1.
  size_t node = snapshot1 - 1;
  // Compute the (compressed) path to the root of snapshot2.
  // Everything left of 'node' is equal in both trees; no need to record.
  while (MerkleTreeMath::IsRightChild(node)) {
    node = MerkleTreeMath::Parent(node);
    ++level;
  }

  if (snapshot2 > leaves_processed_) {
    // Bring the tree sufficiently up to date.
    UpdateToSnapshot(snapshot2);
  }

  // Record the node, unless we already reached the root of snapshot1.
  if (node)
    proof.push_back(Node(level, node));

  // Now record the path from this node to the root of snapshot2.
  std::vector<string> path =
      PathFromNodeToRootAtSnapshot(node, level, snapshot2);
  proof.insert(proof.end(), path.begin(), path.end());
  return proof;
}

string MerkleTree::UpdateToSnapshot(size_t snapshot) {
  if (snapshot == 0)
    return treehasher_.HashEmpty();
  if (snapshot == 1)
    return Node(0, 0);
  if (snapshot == leaves_processed_)
    return Root();
  assert(snapshot <= LeafCount());
  assert(snapshot > leaves_processed_);

  // Update tree, moving up level-by-level.
  size_t level = 0;
  // Index of the first node to be processed at the current level.
  size_t first_node = leaves_processed_;
  // Index of the last node.
  size_t last_node = snapshot - 1;

  // Process level-by-level until we converge to a single node.
  // (first_node, last_node) = (0, 0) means we have reached the root level.
  while (last_node) {
    if (LazyLevelCount() <= level + 1) {
      AddLevel();
    } else if (NodeCount(level + 1) ==
               MerkleTreeMath::Parent(first_node) + 1) {
      // The leftmost parent at level 'level+1' may already exist,
      // so we need to update it. Nuke the old parent.
      PopBack(level + 1);
    }

    // Compute the parents of new nodes at the current level.
    // Start with a left sibling and parse an even number of nodes.
    for (size_t j = first_node & ~1; j < last_node; j += 2) {
      PushBack(level + 1,
               treehasher_.HashChildren(Node(level, j), Node(level, j + 1)));
    }
    // If the last node at the current level is a left sibling,
    // dummy-propagate it one level up.
    if (!MerkleTreeMath::IsRightChild(last_node))
      PushBack(level + 1, Node(level, last_node));

    first_node = MerkleTreeMath::Parent(first_node);
    last_node = MerkleTreeMath::Parent(last_node);
    ++level;
  };

  leaves_processed_ = snapshot;
  return Root();
}

string MerkleTree::RecomputePastSnapshot(size_t snapshot, size_t node_level,
                                         string* node) {
  size_t level = 0;
  // Index of the rightmost node at the current level for this snapshot.
  size_t last_node = snapshot - 1;

  if (snapshot == leaves_processed_) {
    // Nothing to recompute.
    if (node && LazyLevelCount() > node_level) {
      if (node_level > 0) {
        node->assign(LastNode(node_level));
      } else {
        // Leaf level: grab the last processed leaf.
        node->assign(Node(node_level, last_node));
      }
    }
    return Root();
  }

  assert(snapshot < leaves_processed_);

  // Recompute nodes on the path of the last leaf.
  while (MerkleTreeMath::IsRightChild(last_node)) {
    if (node && node_level == level)
      node->assign(Node(level, last_node));
    // Left sibling and parent exist in the snapshot, and are equal to
    // those in the tree; no need to rehash, move one level up.
    last_node = MerkleTreeMath::Parent(last_node);
    ++level;
  }

  // Now last_node is the index of a left sibling with no right sibling.
  // Record the node.
  string subtree_root = Node(level, last_node);

  if (node && node_level == level)
    node->assign(subtree_root);

  while (last_node) {
    if (MerkleTreeMath::IsRightChild(last_node)) {
      // Recompute the parent of tree_[level][last_node].
      subtree_root =
          treehasher_.HashChildren(Node(level, last_node - 1), subtree_root);
    }
    // Else the parent is a dummy copy of the current node; do nothing.

    last_node = MerkleTreeMath::Parent(last_node);
    ++level;
    if (node && node_level == level)
      node->assign(subtree_root);
  }

  return subtree_root;
}

std::vector<string> MerkleTree::PathFromNodeToRootAtSnapshot(size_t node,
                                                             size_t level,
                                                             size_t snapshot) {
  std::vector<string> path;
  if (snapshot == 0)
    return path;
  // Index of the last node.
  size_t last_node = (snapshot - 1) >> level;
  if (level >= level_count_ || node > last_node || snapshot > LeafCount())
    return path;

  if (snapshot > leaves_processed_) {
    // Bring the tree sufficiently up to date.
    UpdateToSnapshot(snapshot);
  }

  // Move up, recording the sibling of the current node at each level.
  while (last_node) {
    size_t sibling = MerkleTreeMath::Sibling(node);
    if (sibling < last_node) {
      // The sibling is not the last node of the level in the snapshot
      // tree, so its value is correct in the tree.
      path.push_back(Node(level, sibling));
    } else if (sibling == last_node) {
      // The sibling is the last node of the level in the snapshot tree,
      // so we get its value for the snapshot. Get the root in the same pass.
      string recompute_node;
      RecomputePastSnapshot(snapshot, level, &recompute_node);
      path.push_back(recompute_node);
    }
    // Else sibling > last_node so the sibling does not exist. Do nothing.
    // Continue moving up in the tree, ignoring dummy copies.

    node = MerkleTreeMath::Parent(node);
    last_node = MerkleTreeMath::Parent(last_node);
    ++level;
  };

  return path;
}

string MerkleTree::Node(size_t level, size_t index) const {
  assert(NodeCount(level) > index);
  return tree_[level].substr(index * treehasher_.DigestSize(),
                             treehasher_.DigestSize());
}

string MerkleTree::Root() const {
  assert(tree_.back().size() == treehasher_.DigestSize());
  return tree_.back();
}

size_t MerkleTree::NodeCount(size_t level) const {
  assert(LazyLevelCount() > level);
  return tree_[level].size() / treehasher_.DigestSize();
}

string MerkleTree::LastNode(size_t level) const {
  assert(NodeCount(level) >= 1U);
  return tree_[level].substr(tree_[level].size() - treehasher_.DigestSize());
}

void MerkleTree::PopBack(size_t level) {
  assert(NodeCount(level) >= 1U);
  tree_[level].erase(tree_[level].size() - treehasher_.DigestSize());
}

void MerkleTree::PushBack(size_t level, string node) {
  assert(node.size() == treehasher_.DigestSize());
  assert(LazyLevelCount() > level);
  tree_[level].append(node);
}

void MerkleTree::AddLevel() {
  tree_.push_back(string());
}

size_t MerkleTree::LazyLevelCount() const {
  return tree_.size();
}