1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <time.h>
#include <string>
#include <vector>
#include "merkletree/compact_merkle_tree.h"
#include "merkletree/merkle_tree.h"
#include "merkletree/merkle_verifier.h"
#include "merkletree/serial_hasher.h"
#include "merkletree/tree_hasher.h"
#include "util/testing.h"
#include "util/util.h"
namespace {
using std::string;
using std::unique_ptr;
// REFERENCE IMPLEMENTATIONS
// Get the largest power of two smaller than i.
int DownToPowerOfTwo(int i) {
CHECK_GE(i, 2);
// Find the smallest power of two greater than or equal to i.
int split = 1;
do {
split <<= 1;
} while (split < i);
// Get the largest power of two smaller than i.
return split >> 1;
}
// Reference implementation of Merkle hash, for cross-checking.
string ReferenceMerkleTreeHash(string inputs[], int input_size,
TreeHasher* treehasher) {
if (!input_size)
return treehasher->HashEmpty();
if (input_size == 1)
return treehasher->HashLeaf(inputs[0]);
const int split = DownToPowerOfTwo(input_size);
return treehasher->HashChildren(
ReferenceMerkleTreeHash(&inputs[0], split, treehasher),
ReferenceMerkleTreeHash(&inputs[split], input_size - split, treehasher));
}
// Reference implementation of Merkle paths. Path from leaf to root,
// excluding the leaf and root themselves.
std::vector<string> ReferenceMerklePath(string inputs[], int input_size,
int leaf, TreeHasher* treehasher) {
std::vector<string> path;
if (leaf > input_size || leaf == 0)
return path;
if (input_size == 1)
return path;
const int split = DownToPowerOfTwo(input_size);
std::vector<string> subpath;
if (leaf <= split) {
subpath = ReferenceMerklePath(&inputs[0], split, leaf, treehasher);
path.insert(path.end(), subpath.begin(), subpath.end());
path.push_back(ReferenceMerkleTreeHash(&inputs[split], input_size - split,
treehasher));
} else {
subpath = ReferenceMerklePath(&inputs[split], input_size - split,
leaf - split, treehasher);
path.insert(path.end(), subpath.begin(), subpath.end());
path.push_back(ReferenceMerkleTreeHash(&inputs[0], split, treehasher));
}
return path;
}
// Reference implementation of snapshot consistency.
// Call with have_root1 = true.
std::vector<string> ReferenceSnapshotConsistency(string inputs[],
int snapshot2, int snapshot1,
TreeHasher* treehasher,
bool have_root1) {
std::vector<string> proof;
if (snapshot1 == 0 || snapshot1 > snapshot2)
return proof;
if (snapshot1 == snapshot2) {
// Consistency proof for two equal subtrees is empty.
if (!have_root1)
// Record the hash of this subtree unless it's the root for which
// the proof was originally requested. (This happens when the snapshot1
// tree is balanced.)
proof.push_back(ReferenceMerkleTreeHash(inputs, snapshot1, treehasher));
return proof;
}
// 0 < snapshot1 < snapshot2
const int split = DownToPowerOfTwo(snapshot2);
std::vector<string> subproof;
if (snapshot1 <= split) {
// Root of snapshot1 is in the left subtree of snapshot2.
// Prove that the left subtrees are consistent.
subproof = ReferenceSnapshotConsistency(inputs, split, snapshot1,
treehasher, have_root1);
proof.insert(proof.end(), subproof.begin(), subproof.end());
// Record the hash of the right subtree (only present in snapshot2).
proof.push_back(ReferenceMerkleTreeHash(&inputs[split], snapshot2 - split,
treehasher));
} else {
// Snapshot1 root is at the same level as snapshot2 root.
// Prove that the right subtrees are consistent. The right subtree
// doesn't contain the root of snapshot1, so set have_root1 = false.
subproof =
ReferenceSnapshotConsistency(&inputs[split], snapshot2 - split,
snapshot1 - split, treehasher, false);
proof.insert(proof.end(), subproof.begin(), subproof.end());
// Record the hash of the left subtree (equal in both trees).
proof.push_back(ReferenceMerkleTreeHash(&inputs[0], split, treehasher));
}
return proof;
}
class MerkleTreeTest : public ::testing::Test {
protected:
TreeHasher tree_hasher_;
std::vector<string> data_;
MerkleTreeTest() : tree_hasher_(unique_ptr<Sha256Hasher>(new Sha256Hasher)) {
for (int i = 0; i < 256; ++i)
data_.push_back(string(1, i));
}
};
class MerkleTreeFuzzTest : public MerkleTreeTest {
protected:
MerkleTreeFuzzTest() : MerkleTreeTest() {
}
void SetUp() {
srand(time(NULL));
}
};
class CompactMerkleTreeTest : public MerkleTreeTest {};
class CompactMerkleTreeFuzzTest : public MerkleTreeFuzzTest {
protected:
string RandomLeaf(size_t len) {
string r;
for (size_t i = 0; i < len; ++i) {
r += uint8_t(rand() % 0xff);
}
return r;
}
};
unique_ptr<Sha256Hasher> NewSha256Hasher() {
return unique_ptr<Sha256Hasher>(new Sha256Hasher);
}
// FUZZ TESTS AGAINST REFERENCE IMPLEMENTATIONS
// Make random root queries and check against the reference hash.
TEST_F(MerkleTreeFuzzTest, RootFuzz) {
for (size_t tree_size = 1; tree_size <= data_.size(); ++tree_size) {
MerkleTree tree(NewSha256Hasher());
for (size_t j = 0; j < tree_size; ++j)
tree.AddLeaf(data_[j]);
// Since the tree is evaluated lazily, the order of queries is significant.
// Generate a random sequence of 8 queries for each tree.
for (size_t j = 0; j < 8; ++j) {
// A snapshot in the range 0...tree_size.
const size_t snapshot = rand() % (tree_size + 1);
EXPECT_EQ(tree.RootAtSnapshot(snapshot),
ReferenceMerkleTreeHash(data_.data(), snapshot,
&tree_hasher_));
}
}
}
TEST_F(CompactMerkleTreeTest, RootFuzz) {
for (size_t tree_size = 1; tree_size <= data_.size(); ++tree_size) {
CompactMerkleTree tree(NewSha256Hasher());
for (size_t j = 0; j < tree_size; ++j) {
tree.AddLeaf(data_[j]);
// Since the tree is evaluated lazily, the tree state is significant
// when querying the root hash. Flip a coin and decide whether to
// query now or later.
if (rand() & 1) {
EXPECT_EQ(tree.CurrentRoot(),
ReferenceMerkleTreeHash(data_.data(), j + 1, &tree_hasher_));
}
}
}
}
// Make random path queries and check against the reference implementation.
TEST_F(MerkleTreeFuzzTest, PathFuzz) {
for (size_t tree_size = 1; tree_size <= data_.size(); ++tree_size) {
MerkleTree tree(NewSha256Hasher());
for (size_t j = 0; j < tree_size; ++j)
tree.AddLeaf(data_[j]);
// Since the tree is evaluated lazily, the order of queries is significant.
// Generate a random sequence of 8 queries for each tree.
for (size_t j = 0; j < 8; ++j) {
// A snapshot in the range 0... length.
const size_t snapshot = rand() % (tree_size + 1);
// A leaf in the range 0... snapshot.
const size_t leaf = rand() % (snapshot + 1);
EXPECT_EQ(tree.PathToRootAtSnapshot(leaf, snapshot),
ReferenceMerklePath(data_.data(), snapshot, leaf,
&tree_hasher_));
}
}
}
// Make random proof queries and check against the reference implementation.
TEST_F(MerkleTreeFuzzTest, ConsistencyFuzz) {
for (size_t tree_size = 1; tree_size <= data_.size(); ++tree_size) {
MerkleTree tree(NewSha256Hasher());
for (size_t j = 0; j < tree_size; ++j)
tree.AddLeaf(data_[j]);
// Since the tree is evaluated lazily, the order of queries is significant.
// Generate a random sequence of 8 queries for each tree.
for (size_t j = 0; j < 8; ++j) {
// A snapshot in the range 0... length.
const size_t snapshot2 = rand() % (tree_size + 1);
// A snapshot in the range 0... snapshot.
const size_t snapshot1 = rand() % (snapshot2 + 1);
EXPECT_EQ(tree.SnapshotConsistency(snapshot1, snapshot2),
ReferenceSnapshotConsistency(data_.data(), snapshot2,
snapshot1, &tree_hasher_, true));
}
}
}
// KNOWN ANSWER TESTS
typedef struct {
const char* str;
int length_bytes;
} TestVector;
// A slightly shorter notation for constructing binary blobs from test vectors.
#define S(t) util::BinaryString(string(t.str, 2 * t.length_bytes))
// The reverse
#define H(t) util::HexString(t)
// The hash of an empty tree is the hash of the empty string.
// (see SerialHasherTest and http://csrc.nist.gov/groups/STM/cavp/)
const TestVector kSHA256EmptyTreeHash = {
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", 32};
// Inputs to the reference tree, which has eight leaves.
const TestVector kInputs[8] = {
{"", 0},
{"00", 1},
{"10", 1},
{"2021", 2},
{"3031", 2},
{"40414243", 4},
{"5051525354555657", 8},
{"606162636465666768696a6b6c6d6e6f", 16},
};
// Level counts for number of leaves in [1, 8]
const size_t kLevelCounts[8] = {1, 2, 3, 3, 4, 4, 4, 4};
// Incremental roots from building the reference tree from inputs leaf-by-leaf.
// Generated from ReferenceMerkleTreeHash.
const TestVector kSHA256Roots[8] = {
{"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d", 32},
{"fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125", 32},
{"aeb6bcfe274b70a14fb067a5e5578264db0fa9b51af5e0ba159158f329e06e77", 32},
{"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7", 32},
{"4e3bbb1f7b478dcfe71fb631631519a3bca12c9aefca1612bfce4c13a86264d4", 32},
{"76e67dadbcdf1e10e1b74ddc608abd2f98dfb16fbce75277b5232a127f2087ef", 32},
{"ddb89be403809e325750d3d263cd78929c2942b7942a34b77e122c9594a74c8c", 32},
{"5dc9da79a70659a9ad559cb701ded9a2ab9d823aad2f4960cfe370eff4604328", 32}};
TEST_F(MerkleTreeTest, RootTestVectors) {
// The first tree: add nodes one by one.
MerkleTree tree1(NewSha256Hasher());
EXPECT_EQ(tree1.LeafCount(), 0U);
EXPECT_EQ(tree1.LevelCount(), 0U);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256EmptyTreeHash.str);
for (size_t i = 0; i < 8; ++i) {
tree1.AddLeaf(S(kInputs[i]));
EXPECT_EQ(tree1.LeafCount(), i + 1);
EXPECT_EQ(tree1.LevelCount(), kLevelCounts[i]);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256Roots[i].str);
EXPECT_STREQ(H(tree1.RootAtSnapshot(0)).c_str(), kSHA256EmptyTreeHash.str);
for (size_t j = 0; j <= i; ++j) {
EXPECT_STREQ(H(tree1.RootAtSnapshot(j + 1)).c_str(),
kSHA256Roots[j].str);
}
for (size_t j = i + 1; j < 8; ++j) {
EXPECT_EQ(tree1.RootAtSnapshot(j + 1), string());
}
}
// The second tree: add all nodes at once.
MerkleTree tree2(NewSha256Hasher());
for (int i = 0; i < 8; ++i) {
tree2.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree2.LeafCount(), 8U);
EXPECT_EQ(tree2.LevelCount(), kLevelCounts[7]);
EXPECT_STREQ(H(tree2.CurrentRoot()).c_str(), kSHA256Roots[7].str);
// The third tree: add nodes in two chunks.
MerkleTree tree3(NewSha256Hasher());
// Add three nodes.
for (int i = 0; i < 3; ++i) {
tree3.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree3.LeafCount(), 3U);
EXPECT_EQ(tree3.LevelCount(), kLevelCounts[2]);
EXPECT_STREQ(H(tree3.CurrentRoot()).c_str(), kSHA256Roots[2].str);
// Add the remaining nodes.
for (int i = 3; i < 8; ++i) {
tree3.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree3.LeafCount(), 8U);
EXPECT_EQ(tree3.LevelCount(), kLevelCounts[7]);
EXPECT_STREQ(H(tree3.CurrentRoot()).c_str(), kSHA256Roots[7].str);
}
TEST_F(CompactMerkleTreeTest, RootTestVectors) {
// The first tree: add nodes one by one.
CompactMerkleTree tree1(NewSha256Hasher());
EXPECT_EQ(tree1.LeafCount(), 0U);
EXPECT_EQ(tree1.LevelCount(), 0U);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256EmptyTreeHash.str);
for (size_t i = 0; i < 8; ++i) {
tree1.AddLeaf(S(kInputs[i]));
EXPECT_EQ(tree1.LeafCount(), i + 1);
EXPECT_EQ(tree1.LevelCount(), kLevelCounts[i]);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256Roots[i].str);
}
// The second tree: add all nodes at once.
CompactMerkleTree tree2(NewSha256Hasher());
for (int i = 0; i < 8; ++i) {
tree2.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree2.LeafCount(), 8U);
EXPECT_EQ(tree2.LevelCount(), kLevelCounts[7]);
EXPECT_STREQ(H(tree2.CurrentRoot()).c_str(), kSHA256Roots[7].str);
// The third tree: add nodes in two chunks.
CompactMerkleTree tree3(NewSha256Hasher());
// Add three nodes.
for (int i = 0; i < 3; ++i) {
tree3.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree3.LeafCount(), 3U);
EXPECT_EQ(tree3.LevelCount(), kLevelCounts[2]);
EXPECT_STREQ(H(tree3.CurrentRoot()).c_str(), kSHA256Roots[2].str);
// Add the remaining nodes.
for (int i = 3; i < 8; ++i) {
tree3.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree3.LeafCount(), 8U);
EXPECT_EQ(tree3.LevelCount(), kLevelCounts[7]);
EXPECT_STREQ(H(tree3.CurrentRoot()).c_str(), kSHA256Roots[7].str);
}
TEST_F(CompactMerkleTreeTest, TestCopyCtorWithRootTestVectors) {
MerkleTree tree1(NewSha256Hasher());
CompactMerkleTree refctree1(NewSha256Hasher());
EXPECT_EQ(tree1.LeafCount(), 0U);
EXPECT_EQ(tree1.LevelCount(), 0U);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256EmptyTreeHash.str);
for (size_t i = 0; i < 8; ++i) {
tree1.AddLeaf(S(kInputs[i]));
refctree1.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree1.LeafCount(), 8U);
EXPECT_EQ(tree1.LevelCount(), kLevelCounts[7]);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256Roots[7].str);
CompactMerkleTree ctree1(&tree1, NewSha256Hasher());
EXPECT_EQ(tree1.LeafCount(), ctree1.LeafCount());
EXPECT_EQ(tree1.LevelCount(), ctree1.LevelCount());
EXPECT_EQ(tree1.CurrentRoot(), ctree1.CurrentRoot());
}
TEST_F(CompactMerkleTreeTest, TestCopyCtorThenAddLeafWithRootTestVectors) {
MerkleTree tree(NewSha256Hasher());
EXPECT_EQ(tree.LeafCount(), 0U);
EXPECT_EQ(tree.LevelCount(), 0U);
EXPECT_STREQ(H(tree.CurrentRoot()).c_str(), kSHA256EmptyTreeHash.str);
for (size_t i = 0; i < 5; ++i) {
tree.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree.LeafCount(), 5U);
EXPECT_EQ(tree.LevelCount(), kLevelCounts[4]);
EXPECT_STREQ(H(tree.CurrentRoot()).c_str(), kSHA256Roots[4].str);
CompactMerkleTree ctree(&tree, NewSha256Hasher());
EXPECT_EQ(tree.LeafCount(), ctree.LeafCount());
EXPECT_EQ(tree.LevelCount(), ctree.LevelCount());
EXPECT_EQ(tree.CurrentRoot(), ctree.CurrentRoot());
// Add the remaining nodes.
for (int i = 5; i < 6; ++i) {
tree.AddLeaf(S(kInputs[i]));
ctree.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree.LeafCount(), 6U);
EXPECT_EQ(tree.LevelCount(), kLevelCounts[5]);
EXPECT_STREQ(H(tree.CurrentRoot()).c_str(), kSHA256Roots[5].str);
EXPECT_EQ(tree.LeafCount(), ctree.LeafCount());
EXPECT_EQ(tree.LevelCount(), ctree.LevelCount());
EXPECT_EQ(tree.CurrentRoot(), ctree.CurrentRoot());
}
TEST_F(CompactMerkleTreeFuzzTest, CopyCtorForLargerTreesThenAppend) {
for (size_t tree_size = 1; tree_size <= 512; ++tree_size) {
// Build a tree of |tree_size| from random leaves
MerkleTree tree(NewSha256Hasher());
for (size_t i = 0; i < tree_size; ++i) {
const string l(RandomLeaf(256));
tree.AddLeaf(l);
}
EXPECT_EQ(tree.LeafCount(), tree_size);
// Now build a CompactMerkleTree using |tree| as the model
CompactMerkleTree ctree(&tree, NewSha256Hasher());
// And check that the public interface concurs
EXPECT_EQ(tree.LeafCount(), ctree.LeafCount());
EXPECT_EQ(tree.LevelCount(), ctree.LevelCount());
EXPECT_EQ(tree.CurrentRoot(), ctree.CurrentRoot());
// Now add a bunch more nodes and check that the compact tree
// doesn't diverge from the reference tree:
for (size_t i = 0; i < 256; ++i) {
const string l(RandomLeaf(256));
tree.AddLeaf(l);
ctree.AddLeaf(l);
EXPECT_EQ(tree.LeafCount(), ctree.LeafCount());
EXPECT_EQ(tree.LevelCount(), ctree.LevelCount());
EXPECT_EQ(tree.CurrentRoot(), ctree.CurrentRoot());
}
}
}
// Some paths for the reference tree.
typedef struct {
int leaf;
int snapshot;
int path_length;
TestVector path[3];
} PathTestVector;
// Generated from ReferenceMerklePath.
const PathTestVector kSHA256Paths[6] = {
{0, 0, 0, {{"", 0}, {"", 0}, {"", 0}}},
{1, 1, 0, {{"", 0}, {"", 0}, {"", 0}}},
{1,
8,
3,
{{"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7", 32},
{"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 32},
{"6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4",
32}}},
{6,
8,
3,
{{"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b", 32},
{"ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0", 32},
{"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7",
32}}},
{3,
3,
1,
{{"fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125", 32},
{"", 0},
{"", 0}}},
{2,
5,
3,
{{"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d", 32},
{"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 32},
{"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b",
32}}}};
TEST_F(MerkleTreeTest, PathTestVectors) {
// First tree: build in one go.
MerkleTree tree1(NewSha256Hasher());
for (int i = 0; i < 8; ++i) {
tree1.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree1.LeafCount(), 8U);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256Roots[7].str);
EXPECT_TRUE(tree1.PathToCurrentRoot(9).empty());
for (int i = 0; i < 6; ++i) {
std::vector<string> path =
tree1.PathToRootAtSnapshot(kSHA256Paths[i].leaf,
kSHA256Paths[i].snapshot);
std::vector<string> kat_path;
for (int j = 0; j < kSHA256Paths[i].path_length; ++j)
kat_path.push_back(S(kSHA256Paths[i].path[j]));
EXPECT_EQ(path, kat_path);
}
// Second tree: build incrementally.
MerkleTree tree2(NewSha256Hasher());
EXPECT_EQ(tree2.PathToCurrentRoot(0), tree1.PathToRootAtSnapshot(0, 0));
EXPECT_TRUE(tree2.PathToCurrentRoot(1).empty());
for (int i = 0; i < 8; ++i) {
tree2.AddLeaf(S(kInputs[i]));
for (int j = 0; j <= i + 1; ++j) {
EXPECT_EQ(tree1.PathToRootAtSnapshot(j, i + 1),
tree2.PathToCurrentRoot(j));
}
for (int j = i + 2; j <= 9; ++j)
EXPECT_TRUE(tree1.PathToRootAtSnapshot(j, i + 1).empty());
}
}
typedef struct {
int snapshot1;
int snapshot2;
int proof_length;
TestVector proof[3];
} ProofTestVector;
// Generated from ReferenceSnapshotConsistency.
const ProofTestVector kSHA256Proofs[4] = {
{1, 1, 0, {{"", 0}, {"", 0}, {"", 0}}},
{1,
8,
3,
{{"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7", 32},
{"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 32},
{"6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4",
32}}},
{6,
8,
3,
{{"0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a", 32},
{"ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0", 32},
{"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7",
32}}},
{2,
5,
2,
{{"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e", 32},
{"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b", 32},
{"", 0}}}};
TEST_F(MerkleTreeTest, ConsistencyTestVectors) {
MerkleTree tree1(NewSha256Hasher());
for (int i = 0; i < 8; ++i) {
tree1.AddLeaf(S(kInputs[i]));
}
EXPECT_EQ(tree1.LeafCount(), 8U);
EXPECT_STREQ(H(tree1.CurrentRoot()).c_str(), kSHA256Roots[7].str);
for (int i = 0; i < 4; ++i) {
std::vector<string> proof =
tree1.SnapshotConsistency(kSHA256Proofs[i].snapshot1,
kSHA256Proofs[i].snapshot2);
std::vector<string> kat_proof;
for (int j = 0; j < kSHA256Proofs[i].proof_length; ++j)
kat_proof.push_back(S(kSHA256Proofs[i].proof[j]));
EXPECT_EQ(proof, kat_proof);
}
}
TEST_F(MerkleTreeTest, AddLeafHash) {
const char* kHashValue = "0123456789abcdef0123456789abcdef";
MerkleTree tree(NewSha256Hasher());
size_t index = tree.AddLeafHash(kHashValue);
EXPECT_EQ(1U, index);
EXPECT_EQ(kHashValue, tree.LeafHash(index));
}
TEST_F(CompactMerkleTreeTest, TestCloneEmptyTreeProducesWorkingTree) {
MerkleTree tree(NewSha256Hasher());
CompactMerkleTree compact(&tree, NewSha256Hasher());
EXPECT_STREQ(H(compact.CurrentRoot()).c_str(), kSHA256EmptyTreeHash.str);
}
// VERIFICATION TESTS
class MerkleVerifierTest : public MerkleTreeTest {
protected:
MerkleVerifier verifier_;
MerkleVerifierTest()
: MerkleTreeTest(),
verifier_(unique_ptr<Sha256Hasher>(new Sha256Hasher)) {
}
void VerifierCheck(int leaf, int tree_size, const std::vector<string>& path,
const string& root, const string& data) {
// Verify the original path.
EXPECT_EQ(H(verifier_.RootFromPath(leaf, tree_size, path, data)), H(root));
EXPECT_TRUE(verifier_.VerifyPath(leaf, tree_size, path, root, data));
// Wrong leaf index.
EXPECT_FALSE(verifier_.VerifyPath(leaf - 1, tree_size, path, root, data));
EXPECT_FALSE(verifier_.VerifyPath(leaf + 1, tree_size, path, root, data));
EXPECT_FALSE(verifier_.VerifyPath(leaf ^ 2, tree_size, path, root, data));
// Wrong tree height.
EXPECT_FALSE(verifier_.VerifyPath(leaf, tree_size * 2, path, root, data));
EXPECT_FALSE(verifier_.VerifyPath(leaf, tree_size / 2, path, root, data));
// Wrong leaf.
const char wrong_leaf[] = "WrongLeaf";
EXPECT_FALSE(verifier_.VerifyPath(leaf, tree_size, path, root,
string(wrong_leaf, 9)));
// Wrong root.
EXPECT_FALSE(verifier_.VerifyPath(leaf, tree_size, path,
S(kSHA256EmptyTreeHash), data));
// Wrong paths.
std::vector<string> wrong_path;
// Modify a single element on the path.
for (size_t j = 0; j < path.size(); ++j) {
wrong_path = path;
wrong_path[j] = S(kSHA256EmptyTreeHash);
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
}
// Add garbage at the end of the path.
wrong_path = path;
wrong_path.push_back(string());
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
wrong_path.pop_back();
wrong_path.push_back(root);
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
wrong_path.pop_back();
// Remove a node from the end.
if (!wrong_path.empty()) {
wrong_path.pop_back();
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
}
// Add garbage in the beginning of the path.
wrong_path.clear();
wrong_path.push_back(string());
wrong_path.insert(wrong_path.end(), path.begin(), path.end());
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
wrong_path[0] = root;
EXPECT_FALSE(
verifier_.VerifyPath(leaf, tree_size, wrong_path, root, data));
}
void VerifierConsistencyCheck(int snapshot1, int snapshot2,
const string& root1, const string& root2,
const std::vector<string>& proof) {
// Verify the original consistency proof.
EXPECT_TRUE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1, root2,
proof));
if (proof.empty())
// For simplicity test only non-trivial proofs that have root1 != root2
// snapshot1 != 0 and snapshot1 != snapshot2.
return;
// Wrong snapshot index.
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1 - 1, snapshot2, root1,
root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1 + 1, snapshot2, root1,
root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1 ^ 2, snapshot2, root1,
root2, proof));
// Wrong tree height.
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2 * 2, root1,
root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2 / 2, root1,
root2, proof));
// Wrong root.
const char wrong_root[] = "WrongRoot";
const string bwrong_root(wrong_root, 9);
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
bwrong_root, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, bwrong_root,
root2, proof));
// Swap roots.
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root2,
root1, proof));
// Wrong proofs.
std::vector<string> wrong_proof;
// Empty proof.
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
// Modify a single element in the proof.
for (size_t j = 0; j < proof.size(); ++j) {
wrong_proof = proof;
wrong_proof[j] = S(kSHA256EmptyTreeHash);
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
}
// Add garbage at the end of the proof.
wrong_proof = proof;
wrong_proof.push_back(string());
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
wrong_proof.pop_back();
wrong_proof.push_back(proof.back());
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
wrong_proof.pop_back();
// Remove a node from the end.
wrong_proof.pop_back();
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
// Add garbage in the beginning of the proof.
wrong_proof.clear();
wrong_proof.push_back(string());
wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
wrong_proof[0] = proof[0];
EXPECT_FALSE(verifier_.VerifyConsistency(snapshot1, snapshot2, root1,
root2, wrong_proof));
}
};
TEST_F(MerkleVerifierTest, VerifyPath) {
std::vector<string> path;
// Various invalid paths.
EXPECT_FALSE(verifier_.VerifyPath(0, 0, path, string(), string()));
EXPECT_FALSE(verifier_.VerifyPath(0, 1, path, string(), string()));
EXPECT_FALSE(verifier_.VerifyPath(1, 0, path, string(), string()));
EXPECT_FALSE(verifier_.VerifyPath(2, 1, path, string(), string()));
EXPECT_FALSE(
verifier_.VerifyPath(0, 0, path, S(kSHA256EmptyTreeHash), string()));
EXPECT_FALSE(
verifier_.VerifyPath(0, 1, path, S(kSHA256EmptyTreeHash), string()));
EXPECT_FALSE(
verifier_.VerifyPath(1, 0, path, S(kSHA256EmptyTreeHash), string()));
EXPECT_FALSE(
verifier_.VerifyPath(2, 1, path, S(kSHA256EmptyTreeHash), string()));
// Known good paths.
// i = 0 is an invalid path.
for (int i = 1; i < 6; ++i) {
// Construct the path.
path.clear();
for (int j = 0; j < kSHA256Paths[i].path_length; ++j)
path.push_back(S(kSHA256Paths[i].path[j]));
VerifierCheck(kSHA256Paths[i].leaf, kSHA256Paths[i].snapshot, path,
S(kSHA256Roots[kSHA256Paths[i].snapshot - 1]),
S(kInputs[kSHA256Paths[i].leaf - 1]));
}
// More tests with reference path generator.
string root;
for (size_t tree_size = 1; tree_size <= data_.size() / 2; ++tree_size) {
// Repeat for each leaf in range.
for (size_t leaf = 1; leaf <= tree_size; ++leaf) {
path = ReferenceMerklePath(data_.data(), tree_size, leaf, &tree_hasher_);
root = ReferenceMerkleTreeHash(data_.data(), tree_size, &tree_hasher_);
VerifierCheck(leaf, tree_size, path, root, data_[leaf - 1]);
}
}
}
TEST_F(MerkleVerifierTest, VerifyConsistencyProof) {
std::vector<string> proof;
string root1, root2;
// Snapshots that are always consistent.
EXPECT_TRUE(verifier_.VerifyConsistency(0, 0, root1, root2, proof));
EXPECT_TRUE(verifier_.VerifyConsistency(0, 1, root1, root2, proof));
EXPECT_TRUE(verifier_.VerifyConsistency(1, 1, root1, root2, proof));
// Invalid consistency proofs.
// Time travel to the past.
EXPECT_FALSE(verifier_.VerifyConsistency(1, 0, root1, root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(2, 1, root1, root2, proof));
// Empty proof.
EXPECT_FALSE(verifier_.VerifyConsistency(1, 2, root1, root2, proof));
root1 = S(kSHA256EmptyTreeHash);
// Roots don't match.
EXPECT_FALSE(verifier_.VerifyConsistency(0, 0, root1, root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(1, 1, root1, root2, proof));
// Roots match but the proof is not empty.
root2 = S(kSHA256EmptyTreeHash);
proof.push_back(S(kSHA256EmptyTreeHash));
EXPECT_FALSE(verifier_.VerifyConsistency(0, 0, root1, root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(0, 1, root1, root2, proof));
EXPECT_FALSE(verifier_.VerifyConsistency(1, 1, root1, root2, proof));
// Known good proofs.
for (int i = 0; i < 4; ++i) {
proof.clear();
for (int j = 0; j < kSHA256Proofs[i].proof_length; ++j)
proof.push_back(S(kSHA256Proofs[i].proof[j]));
const int snapshot1 = kSHA256Proofs[i].snapshot1;
const int snapshot2 = kSHA256Proofs[i].snapshot2;
VerifierConsistencyCheck(snapshot1, snapshot2,
S(kSHA256Roots[snapshot1 - 1]),
S(kSHA256Roots[snapshot2 - 1]), proof);
}
// More tests with reference proof generator.
for (size_t tree_size = 1; tree_size <= data_.size() / 2; ++tree_size) {
root2 = ReferenceMerkleTreeHash(data_.data(), tree_size, &tree_hasher_);
// Repeat for each snapshot in range.
for (size_t snapshot = 1; snapshot <= tree_size; ++snapshot) {
proof = ReferenceSnapshotConsistency(data_.data(), tree_size, snapshot,
&tree_hasher_, true);
root1 = ReferenceMerkleTreeHash(data_.data(), snapshot, &tree_hasher_);
VerifierConsistencyCheck(snapshot, tree_size, root1, root2, proof);
}
}
}
#undef S
#undef H
} // namespace
int main(int argc, char** argv) {
cert_trans::test::InitTesting(argv[0], &argc, &argv, true);
return RUN_ALL_TESTS();
}
|