1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
#include "cpp/merkletree/sparse_merkle_tree.h"
#include <stddef.h>
#include <algorithm>
#include <vector>
#include "merkletree/merkle_tree_math.h"
#include "util/util.h"
using std::make_pair;
using std::ostream;
using std::ostringstream;
using std::reverse;
using std::string;
using std::unique_ptr;
using std::unordered_map;
using std::vector;
const vector<string>* GetNullHashes(const TreeHasher& hasher) {
static unique_ptr<const vector<string>> null_hashes;
if (!null_hashes) {
vector<string> r{hasher.HashLeaf("")};
const int end(hasher.DigestSize() * 8);
CHECK_LT(0, end);
for (int i(1); i < end; ++i) {
r.emplace_back(hasher.HashChildren(r.back(), r.back()));
}
reverse(r.begin(), r.end());
null_hashes.reset(new vector<string>(std::move(r)));
}
return null_hashes.get();
}
SparseMerkleTree::SparseMerkleTree(SerialHasher* hasher)
: treehasher_(unique_ptr<SerialHasher>(hasher)),
null_hashes_(GetNullHashes(treehasher_)) {
}
void SparseMerkleTree::EnsureHaveLevel(size_t level) {
if (tree_.size() < (level + 1)) {
tree_.resize(level + 1);
}
}
void SparseMerkleTree::SetLeaf(const Path& path, const string& data) {
CHECK_EQ(treehasher_.DigestSize(), path.size());
// Mark the tree dirty:
root_hash_.clear();
string leaf_hash(treehasher_.HashLeaf(data));
IndexType node_index(0);
for (int depth(0); depth <= kDigestSizeBits; ++depth) {
node_index += PathBit(path, depth);
EnsureHaveLevel(depth);
auto it(tree_[depth].find(node_index));
if (it == tree_[depth].end()) {
CHECK(tree_[depth]
.emplace(make_pair(node_index, TreeNode(path, leaf_hash)))
.second);
return;
} else if (it->second.type_ == TreeNode::INTERNAL) {
// Mark the internal node hash dirty
it->second.hash_.clear();
} else if (*it->second.path_ == path) {
// replacement
CHECK_EQ(TreeNode::LEAF, it->second.type_);
it->second.hash_ = std::move(leaf_hash);
return;
} else {
// restructure: push the existing node down a level and replace this one
// with an INTERNAL node
CHECK_LT(depth, kDigestSizeBits);
EnsureHaveLevel(depth + 1);
IndexType child_index((node_index << 1) +
PathBit(*it->second.path_, depth + 1));
CHECK(tree_[depth + 1]
.emplace(make_pair(child_index, std::move(it->second)))
.second);
it->second.type_ = TreeNode::INTERNAL;
it->second.hash_.clear();
}
node_index <<= 1;
}
LOG(FATAL) << "Failed to set " << path << " to " << data;
}
void SparseMerkleTree::DumpTree(ostream* os, size_t depth,
IndexType index) const {
if (tree_.size() <= depth) {
return;
}
const string indent((depth + 1) * 2, '-');
for (int side(0); side < 2; ++side) {
auto child(tree_[depth].find(index + side));
if (child != tree_[depth].end()) {
*os << indent << side << ": " << child->second.DebugString() << "\n";
DumpTree(os, depth + 1, (index + side) << 1);
}
}
}
string SparseMerkleTree::Dump() const {
ostringstream ret;
ret << "\nTree [Root: " << util::ToBase64(root_hash_) << "]:\n";
if (!tree_.empty()) {
DumpTree(&ret, 0, 0);
}
return ret.str();
}
string SparseMerkleTree::CalculateSubtreeHash(size_t depth, IndexType index) {
if (tree_.size() <= depth) {
return null_hashes_->at(depth);
}
auto it(tree_[depth].find(index));
if (it != tree_[depth].end()) {
switch (it->second.type_) {
case TreeNode::INTERNAL: {
if (!it->second.hash_.empty()) {
return it->second.hash_;
}
IndexType left_child_index(index << 1);
const string left(CalculateSubtreeHash(depth + 1, left_child_index));
const string right(
CalculateSubtreeHash(depth + 1, left_child_index + 1));
it->second.hash_.assign(treehasher_.HashChildren(left, right));
return it->second.hash_;
}
case TreeNode::LEAF: {
string ret(it->second.hash_);
const int64_t signed_depth(depth);
CHECK_LE(0, signed_depth);
for (int i(kDigestSizeBits - 1); i > signed_depth; --i) {
if (PathBit(*(it->second.path_), i) == 0) {
ret = treehasher_.HashChildren(ret, null_hashes_->at(i));
} else {
ret = treehasher_.HashChildren(null_hashes_->at(i), ret);
}
}
// TODO(alcutter): maybe cache this?
return ret;
}
}
LOG(FATAL) << "Unknown node type " << it->second.type_ << " !";
}
return null_hashes_->at(depth);
}
string SparseMerkleTree::CurrentRoot() {
if (root_hash_.empty()) {
root_hash_ = treehasher_.HashChildren(CalculateSubtreeHash(0, 0),
CalculateSubtreeHash(0, 1));
}
return root_hash_;
}
std::vector<string> SparseMerkleTree::InclusionProof(const Path& path) {
// TODO(alcutter): implement
LOG(FATAL) << "Not implemented.";
}
string SparseMerkleTree::TreeNode::DebugString() const {
ostringstream os;
os << "[TreeNode type: ";
switch (type_) {
case INTERNAL:
os << "I";
break;
case LEAF:
os << "L";
break;
}
os << " hash: ";
if (!hash_.empty()) {
os << util::ToBase64(hash_);
} else {
os << "(unset)";
}
if (path_) {
os << " path: ";
os << *path_;
}
os << "]";
return os.str();
}
ostream& operator<<(ostream& out, const SparseMerkleTree::Path& path) {
for (size_t i(0); i < path.size(); ++i) {
uint8_t t(path[i]);
for (size_t b(8); b > 0; --b) {
out << (t & 0x80 ? '1' : '0');
t <<= 1;
}
}
return out;
}
|